

50

0

	Berkshire Design Group Landscape Architecture Civil Engineering Planning Land Surveying 4 Allen Place, Northampton, Massachusetts 01060 (413) 582-7000 • FAX (413) 582-7005 Email: bdg@berkshiredesign.com Web: http://www.berkshiredesign.com
	This drawing is not intended nor shall it be used for construction purposes unless the signed professional seal of a registered landscape architect, civil engineer or land surveyor employed by The Berkshire Design Group. Inc. is affixed above. Do not scale drawing for quantity takeoffs or construction. Use written dimensions only if dimensions are incomplete. contact The Berkshire Design Group. Inc. for clarification. © Copyright The Berkshire Design Group. Inc. This drawing and all of its contents are the express property of The Berkshire Design Group. Inc., and shall not be copied or used in any way without the written consent of The Berkshire Design Group. Inc.
OFF-SITE IMPERVIOUS AREA	Amethyst brook Apartments 20-22 Amherst road Pelham, Ma
ON-SITE IMPERVIOUS AREA TOT = TOTAL AREA IMP = IMPERVIOUS AREA WDS = WOODED (FAIR) GRS - OPEN SPACE (FAIR)	
	PROPOSED DRAINAGE
50 100 200 300	Date: December 11, 2020 Scale: Drawn By: LMC Checked By: MBD

Stormwater Management Report

For Amethyst Brook Apartments 20-22 Amherst Road Pelham, MA

December 21, 2020

Prepared by:

4 Allen Place, Northampton, Massachusetts 01060

Table of Contents

Ι.	Introduction	2
II.	Existing Conditions	3
III.	Proposed Conditions	3
IV.	Calculations and Design	4
V.	MADEP Stormwater Standards Compliance	6

Figures

Figure 1	Project Location
Figure 2	Existing Conditions Plan
Figure 3	Drainage Area Soils
Figure 4	Existing Hydrology
Figure 5	Proposed Plan
Figure 6	Proposed Hydrology

Appendix

- Appendix B Test Pit Report
- Appendix C Stormwater Hydrology Calculations
- Appendix D Groundwater Recharge
- Appendix E Water Quality Calculations
- Appendix F Stormwater Management System Operation & Maintenance Plan
- Appendix G Massachusetts DEP Stormwater Checklist

Referenced Documents

Plans:

20-22 Amherst Road, Pelham - Permit Set

Home City Development Inc. is proposing to create new residential housing units at 20-22 Amherst Road, Pelham, Massachusetts. The new units will be created through demolition and replacement of the existing farmhouse at 20 Amherst Street with a similar building and the demolition and replacement of the commercial building at 22 Amherst Road with a new three-story, multi-unit building. The existing driveways and parking areas will be reconfigured as part of the project.

Berkshire Design Group has prepared a Stormwater Management plan for the site in compliance with the Massachusetts Stormwater Handbook. This report summarizes the design of the system and documents how the design complies with those standards.

I. Introduction

The project includes two properties which will be redeveloped into multi-family housing. The property at 20 Amherst road includes a single-family home and barn as well as a large collapsed wood shed, gravel drive and garage. The 8.73-acre 22 Amherst Road property is comprised of a commercial building, garage buildings, parking and access driveway.

The single-family home at #20 Amherst road will be demolished and replaced with a new building comprised of 6 new residential units. The new building will be located on the eastern side of the lot and a parking area will be constructed at the location of the existing building. The existing barn, sheds and detached garage will be demolished. At 22 Amherst Road, all existing structures will be demolished and replaced with a new 3-story apartment building. A new access drive and parking lots will replace the existing. New utility services and stormwater improvements are also proposed.

The parcels are located on the north side of Amherst Road between Harkness Road and North Valley Road. The project location is shown in Figure 1. The project is situated on a steep hillside between Amherst Road and Amethyst Brook. The existing home at #20 Amherst Road occupies the higher portion of the lot adjacent to Amherst Road while the re-development at #22 Amherst Road is located at the base of the steep hillside above Amethyst Brook.

Soil Data

NRCS Soil Survey

The NRCS Soil Survey reports that the on-site soils consist of Hinckley loamy sand, hydrologic soil groups (HSG) A. The USGS Surficial Geology survey indicates that the parcel is located in thin till overlaid by alluvial fan deposits near the brook and coarse deposits near Amherst Road. The NRCS Soil Report for the site is attached in **Appendix A**.

Subsurface Exploration

A total of four test pits were completed at the Amherst Road site on December 1, 2020. The soil evaluation report is attached as **Appendix B**. The test pits indicated that the soils included deep gravelly and stony coarse sandy soils. Estimated seasonal high groundwater (ESHG) within test pits 1-3 at #20 Amherst Road was not observed and was therefore estimated as deeper than the test pit depths which varied from 6.7' to 9' from the surface. At #22, in Test Pit #4 estimated high groundwater was observed at 4.8 ft below the surface. For purposes of infiltration, A soils with a Rawls rate of 2.41 in/hour were assumed. The design of the underground storage and infiltration systems incorporated two feet of separation from ESHG from the test pit data. Since there was no indication of ESHG at #20, more than 2' above the deepest test pit elevation was used for design.

Site Limits

Site limits were based both on the parcel lines and redevelopment areas as well as the contributing drainage area to the south. Since runoff generally flows north towards Amethyst brook as sheet, shallow concentrated and channel flow, a study boundary was established on the north side of the project site to model pre and post peak runoff (see Figures 4 and 6).

II. Existing Conditions

An Existing Conditions Plan is shown on **Figure 2.** NRCS soils throughout the study area are shown on **Figure 3**. Existing hydrology which includes a significant area off-site is shown on **Figure 4**.

The existing hydrology was analyzed as four major drainage areas, E1 through E4, each including impervious areas, open space and wooded areas.

Drainage area E1 includes the area south of Amherst road which is conveyed through the proposed site. This area is comprised of approximately 400' of roadway, and several driveways, homes, garages and sheds located above the road on the hillside. The roadway area and contiguous impervious areas are modeled as a separate drainage sub-area (E1A) since this area will runoff quickly into the drainage system and create a peak runoff separate from the runoff from the hillside. Area E1 is tributary to an existing on-site swale which drains to a side channel of Amethyst Brook.

Drainage area E2 includes the western portion of the study area, the existing home at #20 Amherst road, barns, sheds and garage as well as a portion of the driveway to #22 Amherst Road access driveway and a portion of the #24 Amherst Road property and impervious area. This area is tributary to an existing drainage swale which drains to a side channel of Amethyst Brook.

Drainage area E3 includes the central portion of the study area. This area is modeled as three subareas to reflect existing conditions. Sub-area E3 includes a portion of #24 Amherst Road house, barn and garage roofs and the adjacent property to the north and east which sheet flows north toward the brook. Sub-area E3A is modeled separately because the large impervious area in this area will create an early peak flow. Sub-area E3B is also modeled separately because the garage roof appears to have a separate drainage system which outflows to the terrace below the garage.

Drainage area E4 includes the eastern portion of the study area. Again, this area is modeled as the uphill mostly pervious area (E4) and sub-area E4A, the portion of the factory roof, deck and courtyards which drain directly to the brook.

III. Proposed Conditions

The proposed conditions plan is provided on **Figure 5** and the proposed hydrology is shown on **Figure 6**. The proposed work maintains existing stormwater flow patterns and includes improvements to the existing drainage system off of Amherst Road, two underground storage systems for peak flow attenuation and recharge and hydrodynamic separators for TSS removal.

The proposed site is modeled with four drainage areas matching the patterns found in existing conditions.

In proposed conditions, off-site drainage areas E1 and E1A are unchanged. These areas are labeled P1 and P1A. As in existing conditions, these areas are tributary to an existing on-site swale which drains to a side channel of Amethyst Brook.

Area P2 includes the western portion of the study area and is modeled as five sub-areas to reflect the proposed development and stormwater improvements. As in existing conditions, most of area P2 is tributary to an existing drainage swale which drains to a side channel of Amethyst Brook. Subarea P2A includes a portion of the house at #24 Amherst Road which drains west to the existing drainage system and sub-area P2B is the largely unchanged area below the proposed common drive. Sub-area P2C (the first 170 feet of the entrance drive) and sub-area P2D (the parking lot and front #20 roof) are conveyed to a stormwater detention/infiltration facility located under the parking lot. Finally, since sub-area P2E (140 feet of driveway and rear #20 roof) is down gradient of the stormwater facility in the upper parking lot, it is conveyed to the stormwater detention/infiltration facility located in the lower parking lot.

Drainage area P3 includes the central portion of the study area and is modeled as three sub-areas similarly to existing conditions. Sub-area P3 includes a portion of the house at #24 Amherst Road, barn and garage roofs and the adjacent property to the north and east which sheet flows north toward the brook. Sub-area P3A encompasses the driveway to #22, the parking area and the south side of the #22 roof. This area is directed to a stormwater detention/infiltration facility located under the lower parking area. The detention facility outflows to an existing outflow above Amethyst Brook. Sub-area P3B is the lower part of this drainage area and includes undeveloped areas and the western portion of the #22 building improvements. Stormwater runoff sheet flows off his area to Amethyst Brook.

Drainage area P4 includes the eastern portion of the study area. As in existing conditions, this area is modeled as the uphill mostly pervious area (P4) and sub-area P4A, a portion of the new apartment roof. The apartment roof includes several disconnected downspouts which will discharge north towards Amethyst brook.

Water Quality

Existing impervious areas at the site includes 27,430 sf of roofs, driveways and aprons and 1,201 sf of gravel driveways for a total of 28,640 sf of impervious areas. The proposed redevelopment includes 42,840 sf of building roofs, driveways, parking lots and walkways, an increase of 13,200 sf.

The proposed design provides treatment for impervious area by directing driveways and parking lots to hydrodynamic separators. Runoff from portions of roofs and walkways and other areas which cannot be captured and conveyed to the hydrodynamic separators are conveyed through disconnected downspouts to vegetated buffers or sheet flow through vegetated buffers towards Amethyst brook. Areas treated for water quality exceed new impervious areas created by this redevelopment project (see Section IV and Appendix E).

Based on the manufacturer's calculations, the hydrodynamic separators will provide greater than 90% removal of TSS.

IV. Calculations and Design

Water Quantity

Drainage calculations were performed on HydroCAD Stormwater Modeling System version 10.0 using Soil Conservation Service (SCS) TR-20 methodology. The SCS method is based on rainfall observations, which were used to develop the Intensity-Duration-Frequency relationship, or IDF

curve. The mass curve is a dimensionless distribution of rainfall over time, which indicates the fraction of the rainfall event that occurs at a given time within a 24-hour precipitation event. This synthetic distribution develops peak rates for storms of varying duration and intensities. The SCS distribution provides a cumulative rainfall at any point in time and allows volume-dependent routing runoff calculations to occur. These calculations are included in **Appendix C**. Rainfall values are taken from the latest Northeast Regional Climate Center (NRCC) and are listed in Table 1.

The watershed boundaries for calculation purposes are divided according to the proposed site grading and the parcel boundary. The curve numbers (CNs) for the existing and proposed sub-catchment area are based on the soil type and the existing and proposed cover conditions at the site. The time of concentration (Tc) for large sub-areas with extensive pervious areas is calculated using the lag method. Small sub-area Tcs are set at a minimum of 5 minutes.

Calculations were performed for the 2-, 10-, and 100-year frequency storms under existing and proposed conditions. The results of the calculations are presented in Table 1 below. **Appendix C** presents the HydroCAD output reports.

Point of Analysis	2-Year Storm 3.07" Peak Flow Rate(cfs)	10-Year Storm 4.47" Peak Flow Rate(cfs)	100-Year Storm 7.68" Peak Flow Rate(cfs)
Existing	1.61	3.87	14.47
Proposed*	1.54	3.64	14.02

Table 1. Runoff Summary Table

*Peak flow after storage/attenuation within underground storage chambers

Runoff from the site shows a decrease in peak flow for all storms between pre and post conditions.

Water Quality

Water quality at the proposed site is addressed with water quality units (hydrodynamic separators), followed by storage and infiltration. The proposed runoff from driveways, parking areas and a portion of the #20 roof (approximately 29,000 sf) is conveyed to water quality units for treatment prior to storage and infiltration.

Impervious areas (approximately 14,000 sf) which are not conveyed to water quality units include building roofs and some walkways. Runoff from roofs is either directed to storage facilities or discharged through disconnected downspouts to vegetated buffers. Vegetated swales are also included in the design to convey sidewalk runoff.

The Total Suspended Solids removal for the site provided by the water quality units is calculated by the manufacturer at over 90%.

Water quality volume is provided by storage within the underground detention systems below the lowest outlet pipe. Water quality volume is provided for 1" of runoff over the increased impervious area at the site (see cold water fisheries section below). Table 2 provides a summary of the water

quality calculations. The volume provided exceeds the calculated volume for the increased impervious area.

Existing Impervious Area (sf)	Proposed Impervious Area (sf)	Increase in Impervious Area (sf)	Water Quality Volume on increase (cf)	Water Quality Volume Provided in all facilities (cf)
28,640	41,840	13,200	1,100	1,170

Table 2. Water Quality Volume

Calculations supporting these conclusions are included in Appendix E.

Cold Water Fishery

The proposed redevelopment is within a cold water fishery requiring 80% TSS removal and treatment of the first inch of runoff. The proposed water quality units will provide 90% TSS removal of the runoff from the driveway and parking areas (see Appendix E). The improvements also include infiltration within the underground storage systems which provides temperature mitigation. Storage and detention within the underground storage chambers will also moderate the temperature of the runoff. Walkway areas treated with grass swales and flow through vegetated buffer areas and disconnected downspouts from some of the roofs completes the provided improvements.

Erosion & Sedimentation Control

The project plan set includes provisions for erosion control during construction. The project will be phased to limit the total land area disturbed at one time.

Erosion control barrier is included below all road and wall construction and around the new apartment construction. to prevent migration of sediment offsite or into resource areas during construction.

Straw wattles combined with silt fence are proposed for down-slope protection.

V. MADEP Stormwater Standards Compliance

The following section details how the project will meet the DEP Stormwater Management Policy's ten stormwater management standards.

LID

The project is the redevelopment of the site of an old factory and associated driveway and parking by Amethyst Brook and a farmhouse off of Amherst Road. The project proposes to build multi-family housing at both sites and improve the driveway access. The possibility for LID is limited due to the steep terrain. Limited disturbance in the riverfront is also considered. Nevertheless, water quality is enhanced from existing conditions by conveying the majority of the impervious surfaces to water quality units which will significantly reduce TSS in the runoff from existing conditions since the existing parking lot and driveway has no water quality treatment. Grass swales, deep sump catch basins and a level spreader are also proposed at the site.

Standard 1 - Untreated Stormwater Discharge

The proposed project includes water quality units and underground detention/infiltration facilities designed to capture runoff from the impervious surfaces created and provide water quality treatment prior to discharge to the vegetated buffers and the brook. Existing outfalls, including the existing swale to Amethyst Brook and the drainage outlet from the existing garage are re-used.

Standard 2 - Post-Development Peak Discharge Rates

The proposed detention facilities provide attenuation of discharge rates such that post development discharge rates *are less than* pre-development peak discharge rates leaving the site.

These results are discussed in detail under "Peak Runoff Rate" in **Section IV**, above.

Standard 3 - Recharge to Groundwater

Recharge of the increased impervious area is provided within the proposed underground storage facilities based on the target depth factor of 0.6". For the proposed increase in impervious area, the required recharge volume is 660 cf. The design includes capacity to recharge 1,170 cf which exceeds the required volume. Calculations of recharge are included within **Appendix D**.

Standard 4 – Water Quality

Impervious areas including driveways, parking areas and portions of roofs are captured by BMPs designed to remove 90% TSS.

The water quality volume is calculated based on 1". For the proposed increase in impervious area, the required water quality volume is 1,100 cu. ft. The proposed facilities provide 1,170 cf thereby providing water quality for the additional impervious areas proposed.

Further discussion of this standard is included under "Water Quality" in Section III and in **Appendix E**.

Standard 5 - Higher Potential Pollutant Loads

This is not applicable to this project.

Standard 6 - Protection of Critical Areas

The project is located in a cold water fishery. TSS removal and water quality volume has been increased to meet the requirements of the cold water fishery. Underground storage, detention and infiltration provide runoff temperature moderation.

Standard 7 - Redevelopment Projects

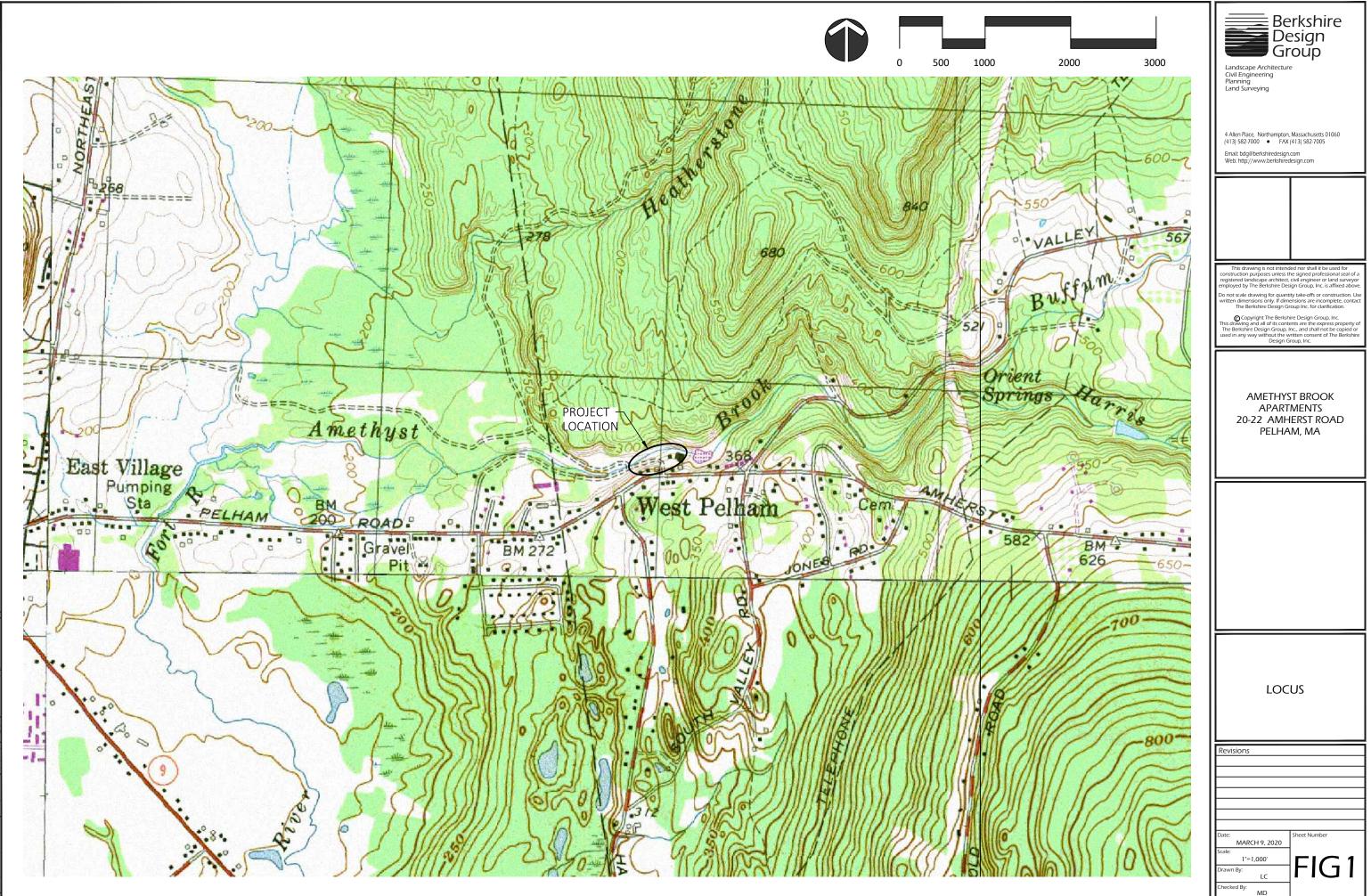
This project is a redevelopment project and measures have been taken to improve existing conditions. Whereas the existing site has little provision for TSS removal, the proposed project includes water quality units designed to remove over 90% TSS from the majority of the proposed driveway and parking areas. Water quality volume is provided on the increased impervious areas proposed. Recharge volume exceeds the volume calculated for the increased impervious area by over 75%.

Standard 8 - Erosion/Sediment Control

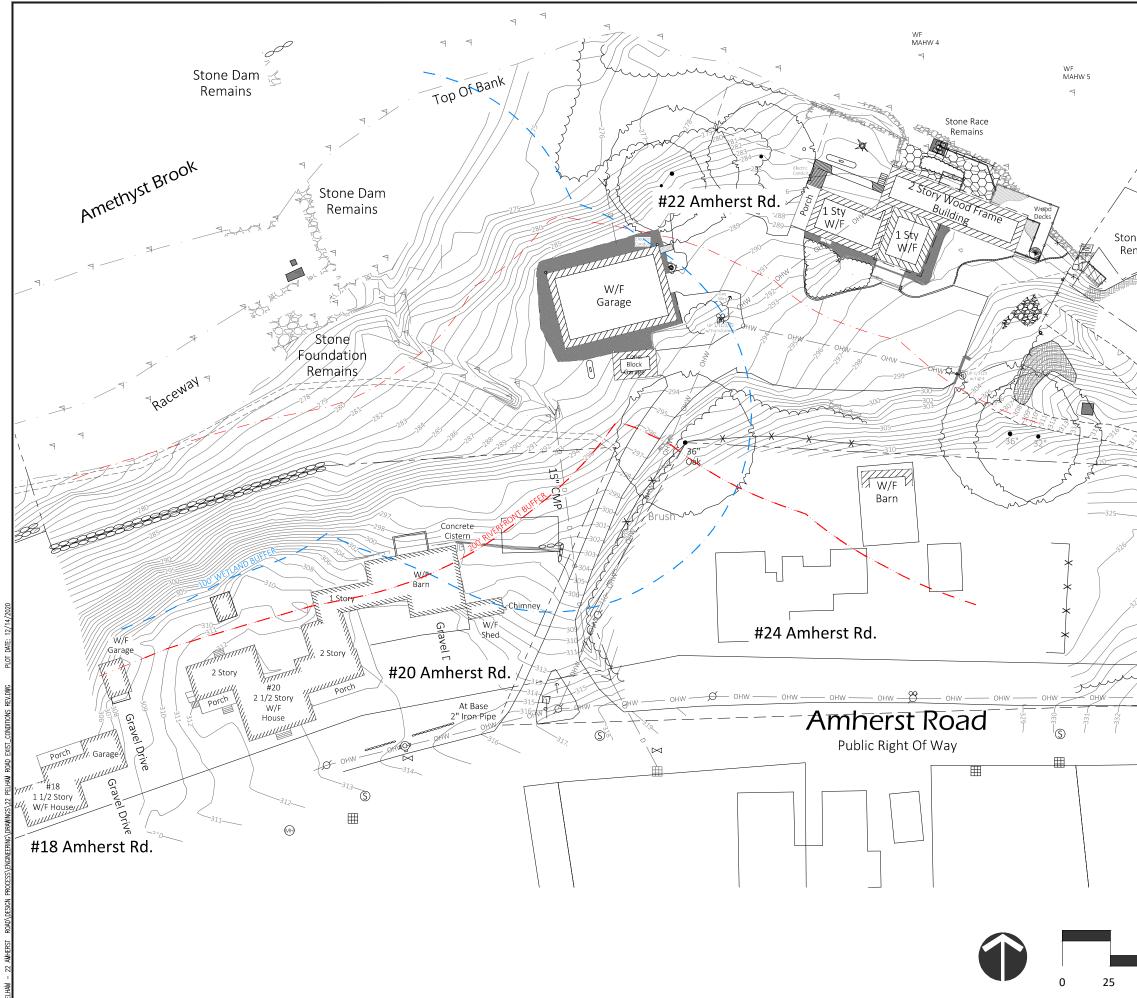
Proposed erosion and sediment controls are shown on the drainage plan for the site.

Standard 9 - Operation/Maintenance Plan

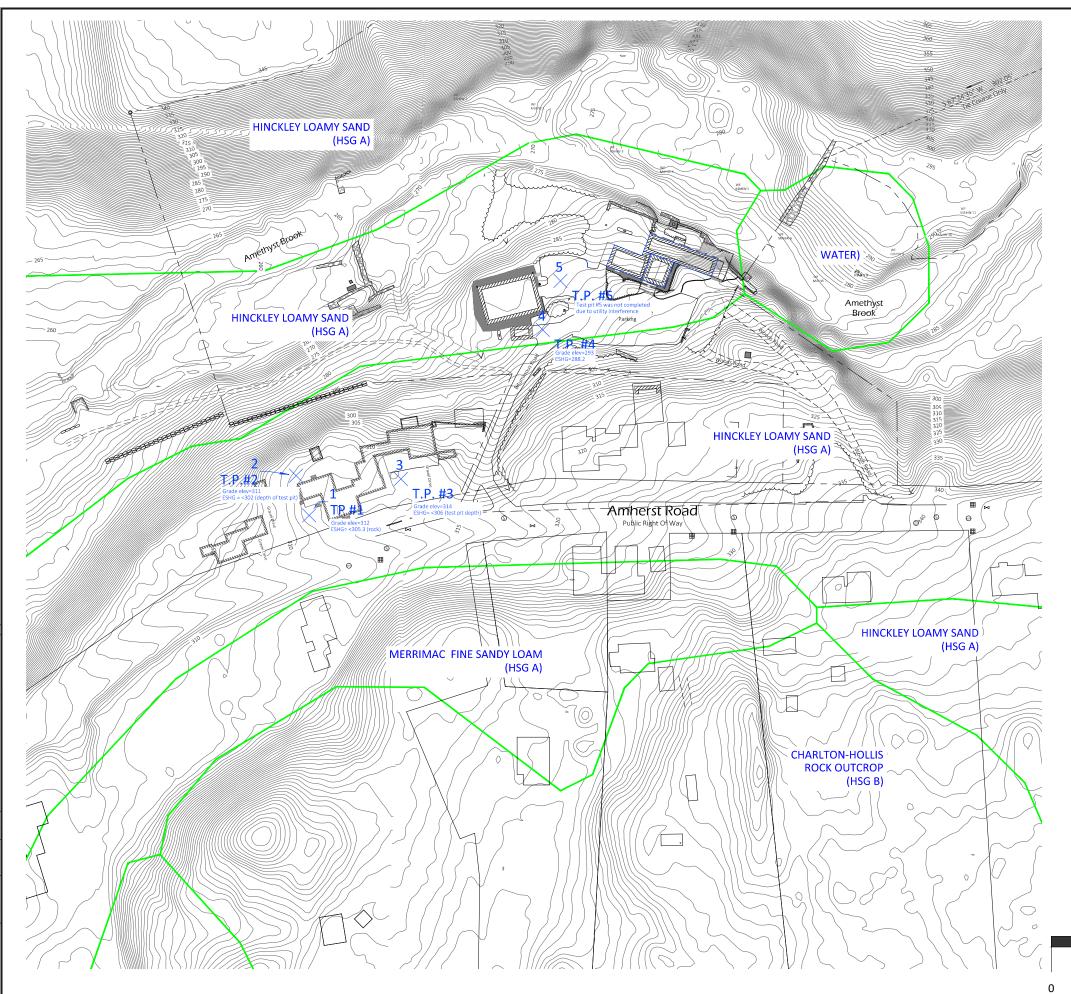
An Operation and Maintenance Plan for the proposed project is included in **Appendix F**. It includes general controls for construction and long term maintenance of the R-Tank systems and Water Quality Units.

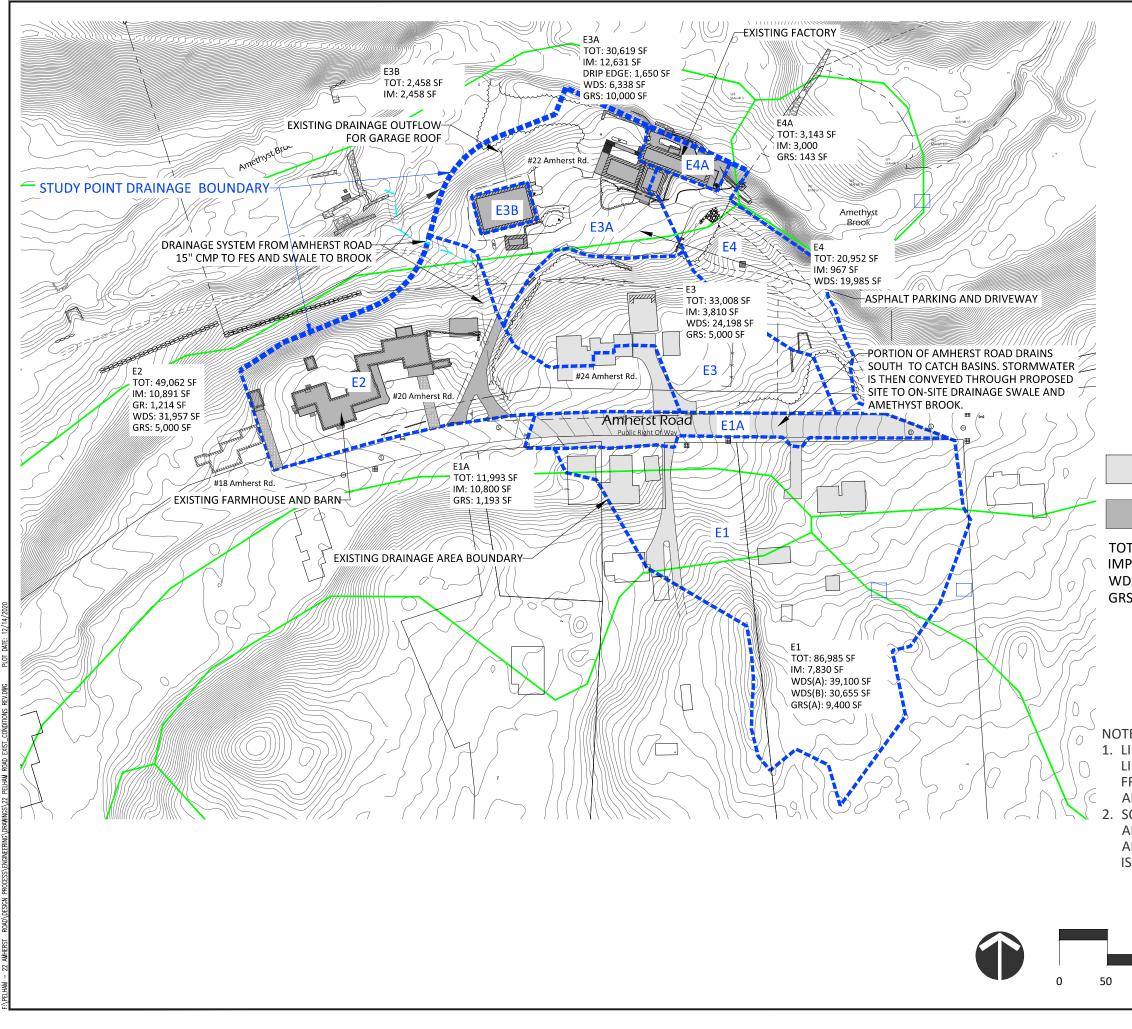

Standard 10 – Prohibition of Illicit Discharges

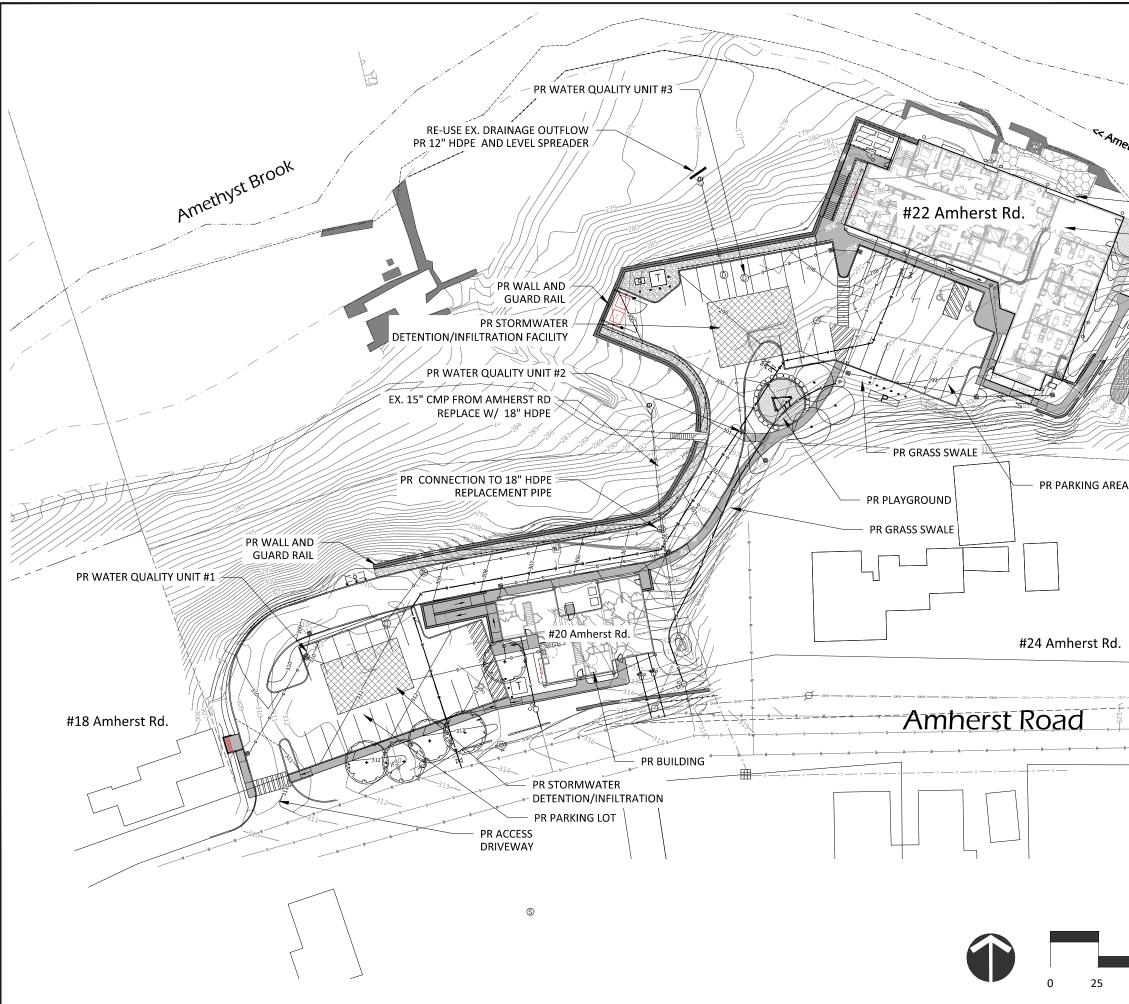
No Illicit Discharge Compliance Statement is included with this report. It will be the responsibility of the owner to submit a statement prior to the discharge of any stormwater to post-construction BMPs.


Pelham, Massachusetts

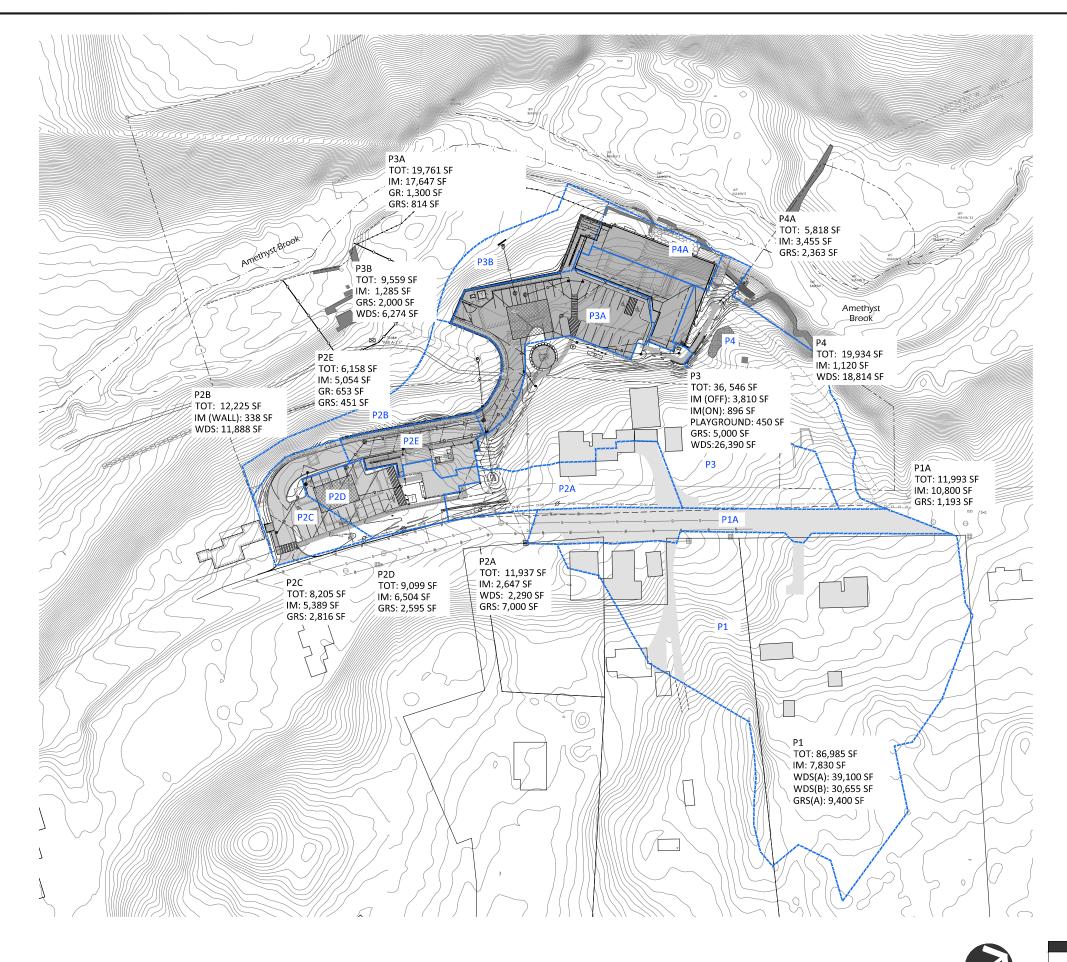
Stormwater Management Report


FIGURES


(Pelham) = 22 antherst rond/design process/engineering/drammigs/20.024. Location.dmg


Berkshire Design Group Landscape Architecture Civil Engineering Planning Land Surveying Stone Dam Remains 4 Allen Place, Northampton, Massachusetts 01060 (413) 582-7000 • FAX (413) 582-7005 WF MAHW 6 Email: bdg@berkshiredesign.com Web: http://www.berkshiredesign.com Stone Dam WF MAHW 8 Remains WF MAHW 7 \triangleleft Amethyst Brook ire Design Group, Inc. i t scale drawing for quantity take-offs or construction lv. If dir he Berkshire Design Group Inc. for clarificati opyright The Berkshire Design Gro Ig and all of its contents are the ex oup, Inc., and shall not b in any way without the written consent of The Berks Design Group, Inc. Amethyst Brook Apartments 20-22 Amherst Road Pelham, Ma Stone Foundation **EXISTING CONDITIONS** PLAN Revisions FIG DECEMBER 14, 2020 1"=50' wn By 50 100 150 LMC cked By: СМС

	Allen Place, Northampton, Massachusetts 01060 (H3) 582-7000 • FAX (H3) 582-7005 Email: bdg/berkshiredesign.com
	This drawing is not intended nor shall it be used for construction purposes unless the signed professional seal of a registered landscape architect, civil engineer or land surveyor employed by The Berkshire Design Group, Inc. is affixed above. Do not scale drawing for quantity take-offs or construction. Use written dimensions only. If dimensions are incomplete, contact The Berkshire Design Group Inc. for dafification. © Copyright The Berkshire Design Group, Inc. This drawing and all of its contents are the express property of The Berkshire Design Group, Inc, and shall not be copied or used in any way without the written content of The Berkshire Design Group, Inc.
	Amethyst Brook Apartments 20-22 Amherst Road Pelham, Ma
	DRAINAGE AREA SOILS
300	Date: DECEMBER 14, 2020 Scale: I*=100' Drawn By: Checked By: MBD



			A Allen Place, Northampton, Massachusetts 01060 (413) 582-7000 • FAX (413) 582-7005 Email: bdg@berkshiredesign.com
			This drawing is not intended nor shall it be used for construction purposes unless the signed professional seal of a registered landscape architect, civil engineer or land surveyor employed by The Berkshire Design Group, Inc. is affixed above. Do not scale drawing for quantity takk-offs or construction. Use written dimensions only. If dimensions are incomplete, contact The Berkshire Design Group Inc. for clarification. © Copyright The Berkshire Design Group, Inc. This drawing and all of its contents are the express property of The Berkshire Design Group, Inc., and shall not be copied or used in any way without the written consent of The Berkshire Design Group, Inc.
	ERVIOUS AREA ERVIOUS AREA		Amethyst brook Apartments 20-22 Amherst road Pelham, ma
P = IMPERVIOUS DS = WOODED (F S - OPEN SPACE	AIR)		
ES: IMITS OF IMPER IMITS OFF SITE ROM AERIAL PH ND MASS GIS. OILS ARE HSG A MHERST ROAD.	APPROXIMATEI OTOGRAPHY NORTH OF THE DRAINAGE	Ð	EXISTING HYDROLOGY
REA SOUTH OF A	AMHERST ROA	D	Date: December 14, 2020 Scale: 1*=100'
100	200	300	Drawn By: LMC Checked By: CMC

F:\PELHAM - 22 AMHERST ROAD\DESIGN PROCESS\ENGINEERING\DRAWINGS\22 PELHAM ROAD PROP_CONDITIONS REVIDMG PLOT DATE: 12/21/

	Berkshire Design Group Landscape Architecture Civil Engineering Planning Land Surveying
Pethyst Brook TE PR DISCONNECTED DOWNSPOUTS	4 Allen Place. Northampton, Massachusetts 01060 (413) 582-7000 • FAX (413) 582-7005 Email: bdg@berkshiredesign.com Web: http://www.berkshiredesign.com
PR MULTI UNIT BLDG	This drawing is not intended nor shall it be used for construction purposes unless the signed professional seal of a registered landscape architect, civil engineer or land surveyor employed by The Berkshire Design Group. Inc. Is affixed above. Do not scale drawing for quantity take-offs or construction. Use written dimensions only. If dimensions are incomplete, contact The Berkshire Design Group Inc. for clarification. © Copyright The Berkshire Design Group. Inc. This drawing and all of its contents are the express property of The Berkshire Design Group. Inc., and shall no the copied or
A -325	AMETHYST BROOK APARTMENTS 20-22 AMHERST ROAD PELHAM, MA
*	PROPOSED PLAN
г	Revisions
50 100 200	Date: DECEMBER 8, 2020 Scale: 1°=50' Drawn By: Checked By: MBD

50

0

	Berkshire Design Group Landscape Architecture Civil Engineering Planning Land Surveying 4 Allen Place, Northampton, Massachusetts 01060 (413) 582-7000 • FAX (413) 582-7005 Email: bdg@berkshiredesign.com Web: http://www.berkshiredesign.com
	This drawing is not intended nor shall it be used for construction purposes unless the signed professional seal of a registered landscape architect, civil engineer or land surveyor employed by The Berkshire Design Group. Inc. is affixed above. Do not scale drawing for quantity takeoffs or construction. Use written dimensions only if dimensions are incomplete. contact The Berkshire Design Group. Inc. for clarification. © Copyright The Berkshire Design Group. Inc. This drawing and all of its contents are the express property of The Berkshire Design Group. Inc., and shall not be copied or used in any way without the written consent of The Berkshire Design Group. Inc.
OFF-SITE IMPERVIOUS AREA	Amethyst brook Apartments 20-22 Amherst road Pelham, Ma
ON-SITE IMPERVIOUS AREA TOT = TOTAL AREA IMP = IMPERVIOUS AREA WDS = WOODED (FAIR) GRS - OPEN SPACE (FAIR)	
	PROPOSED DRAINAGE
50 100 200 300	Date: December 11, 2020 Scale: Drawn By: LMC Checked By: MBD

Pelham, Massachusetts

Stormwater Management Report

Appendix A– NRCS Soils Report

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Hampden and Hampshire Counties, Massachusetts, Eastern Part

22 Pelham Road

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	
Map Unit Descriptions	
Hampden and Hampshire Counties, Massachusetts, Eastern Part	14
1—Water	14
71B—Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely	
stony	14
103C—Charlton-Hollis-Rock outcrop complex, 8 to 15 percent slopes	15
253B—Hinckley loamy sand, 3 to 8 percent slopes	18
253C—Hinckley loamy sand, 8 to 15 percent slopes	20
253D—Hinckley loamy sand, 15 to 25 percent slopes	22
254B—Merrimac fine sandy loam, 3 to 8 percent slopes	23
References	26

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

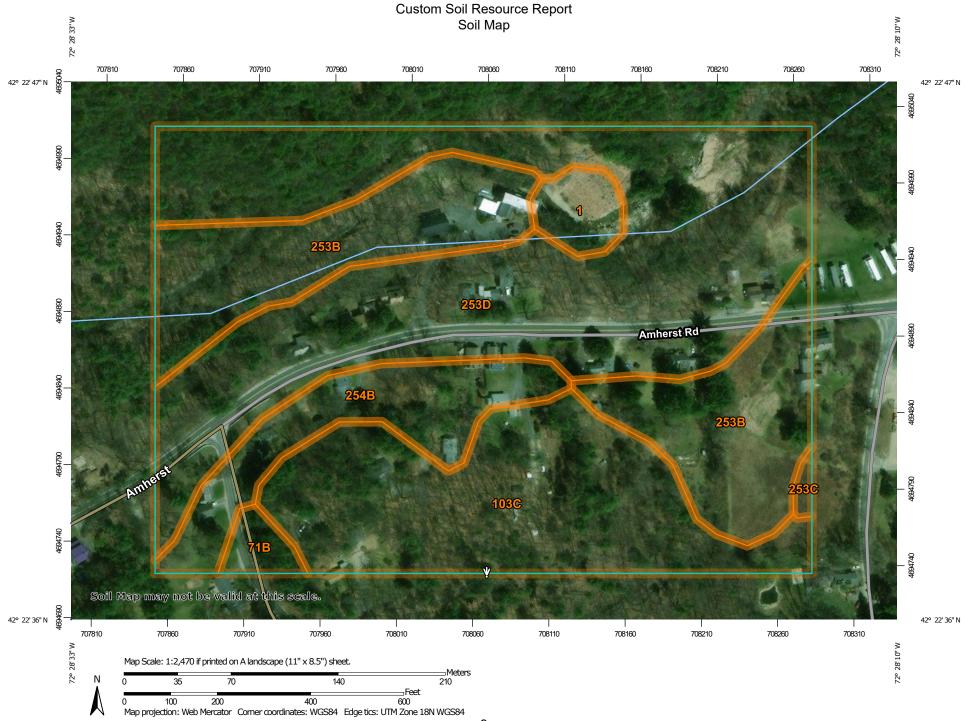
scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.


Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND)	MAP INFORMATION
Area of Int	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:25,000.
Soils	Soil Map Unit Polygons Soil Map Unit Lines	© ☆	Very Stony Spot Wet Spot Other	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil
అ	Soil Map Unit Points Point Features Blowout	 Water Fea	Special Line Features atures Streams and Canals	line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
⊠ × ◇	Borrow Pit Clay Spot Closed Depression	Transport	t ation Rails Interstate Highways	Please rely on the bar scale on each map sheet for map measurements.
**	Gravel Pit Gravelly Spot	~	US Routes Major Roads	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
0 A 4	Landfill Lava Flow Marsh or swamp	Backgrou	Local Roads Ind Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
* 0 0	Mine or Quarry Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
× + ∷	Rock Outcrop Saline Spot Sandy Spot			Soil Survey Area: Hampden and Hampshire Counties, Massachusetts, Eastern Part Survey Area Data: Version 14, Sep 13, 2019
⊕ ◇ ◇	Severely Eroded Spot Sinkhole Slide or Slip			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Sep 29, 2013—Oct
ø	Sodic Spot			16, 2016 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
1	Water	0.7	2.2%
71B	Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony	0.4	1.3%
103C	Charlton-Hollis-Rock outcrop complex, 8 to 15 percent slopes	6.8	21.9%
253B	Hinckley loamy sand, 3 to 8 percent slopes	6.9	22.2%
253C	Hinckley loamy sand, 8 to 15 percent slopes	0.1	0.3%
253D	Hinckley loamy sand, 15 to 25 percent slopes	13.5	43.3%
254B	Merrimac fine sandy loam, 3 to 8 percent slopes	2.7	8.8%
Totals for Area of Interest		31.2	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Hampden and Hampshire Counties, Massachusetts, Eastern Part

1—Water

Map Unit Setting

National map unit symbol: vhz0 Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 110 to 140 days Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

71B—Ridgebury fine sandy loam, 3 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: 2w69c Elevation: 0 to 1,290 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Ridgebury, extremely stony, and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Ridgebury, Extremely Stony

Setting

Landform: Ground moraines, drumlins, drainageways, depressions, hills Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Head slope, base slope Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy lodgment till derived from gneiss, granite, and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 6 inches: fine sandy loam

Bw - 6 to 10 inches: sandy loam

Bg - 10 to 19 inches: gravelly sandy loam

Cd - 19 to 66 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent Percent of area covered with surface fragments: 9.0 percent Depth to restrictive feature: 15 to 35 inches to densic material Natural drainage class: Poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.14 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Hydric soil rating: Yes

Minor Components

Woodbridge, extremely stony

Percent of map unit: 10 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Footslope, summit, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Whitman, extremely stony

Percent of map unit: 8 percent Landform: Depressions Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Paxton, extremely stony

Percent of map unit: 2 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Crest, side slope Down-slope shape: Convex, linear Across-slope shape: Convex, linear Hydric soil rating: No

103C—Charlton-Hollis-Rock outcrop complex, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2wzp1 Elevation: 0 to 1,390 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Charlton, extremely stony, and similar soils: 50 percent Hollis, extremely stony, and similar soils: 20 percent Rock outcrop: 10 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Charlton, Extremely Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oe - 0 to 2 inches: moderately decomposed plant material

A - 2 to 4 inches: fine sandy loam

Bw - 4 to 27 inches: gravelly fine sandy loam

C - 27 to 65 inches: gravelly fine sandy loam

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 9.0 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Hydric soil rating: No

Description of Hollis, Extremely Stony

Setting

Landform: Ridges, hills Landform position (two-dimensional): Backslope, shoulder, summit Landform position (three-dimensional): Side slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Parent material: Coarse-loamy melt-out till derived from granite, gneiss, and/or schist

Typical profile

Oi - 0 to 2 inches: slightly decomposed plant material *A - 2 to 7 inches:* gravelly fine sandy loam *Bw - 7 to 16 inches:* gravelly fine sandy loam *2R - 16 to 26 inches:* bedrock

Properties and qualities

Slope: 8 to 15 percent
Percent of area covered with surface fragments: 9.0 percent
Depth to restrictive feature: 8 to 23 inches to lithic bedrock
Natural drainage class: Somewhat excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Very low (about 2.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Hydric soil rating: No

Description of Rock Outcrop

Setting

Landform: Hills, ridges *Parent material:* Igneous and metamorphic rock

Typical profile

R - 0 to 79 inches: bedrock

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: 0 inches to lithic bedrock
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Available water storage in profile: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: No

Minor Components

Woodbridge, extremely stony

Percent of map unit: 8 percent Landform: Hills, drumlins, ground moraines Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

Canton, extremely stony

Percent of map unit: 5 percent Landform: Hills, ridges, moraines Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear, convex Across-slope shape: Convex Hydric soil rating: No

Chatfield, extremely stony

Percent of map unit: 5 percent Landform: Hills, ridges Landform position (two-dimensional): Summit, backslope, shoulder Landform position (three-dimensional): Side slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Ridgebury, extremely stony

Percent of map unit: 2 percent Landform: Depressions, hills, drainageways, ground moraines, drumlins Landform position (two-dimensional): Toeslope, footslope Landform position (three-dimensional): Base slope, head slope Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

253B—Hinckley loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svm8 Elevation: 0 to 1,430 feet Mean annual precipitation: 36 to 53 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

Landform: Kame terraces, outwash deltas, kames, eskers, outwash terraces, outwash plains, moraines

Landform position (two-dimensional): Summit, backslope, footslope, shoulder Landform position (three-dimensional): Nose slope, side slope, base slope, crest.

tread. riser

Down-slope shape: Linear, convex, concave

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Very low (about 3.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Windsor

Percent of map unit: 8 percent
Landform: Eskers, outwash terraces, kames, kame terraces, outwash plains, moraines, outwash deltas
Landform position (two-dimensional): Summit, shoulder, backslope, footslope
Landform position (three-dimensional): Nose slope, side slope, base slope, crest, riser, tread
Down-slope shape: Linear, convex, concave
Across-slope shape: Convex, linear, concave
Hydric soil rating: No

Sudbury

Percent of map unit: 5 percent

Custom Soil Resource Report

Landform: Kame terraces, outwash plains, moraines, outwash deltas, outwash terraces
 Landform position (two-dimensional): Backslope, footslope
 Landform position (three-dimensional): Side slope, base slope, head slope, tread
 Down-slope shape: Concave, linear
 Across-slope shape: Linear, concave
 Hydric soil rating: No

Agawam

Percent of map unit: 2 percent
Landform: Kames, kame terraces, outwash plains, moraines, outwash deltas, eskers, outwash terraces
Landform position (two-dimensional): Summit, shoulder, backslope, footslope
Landform position (three-dimensional): Nose slope, side slope, base slope, crest, tread, riser
Down-slope shape: Linear, convex, concave
Across-slope shape: Convex, linear, concave
Hydric soil rating: No

253C—Hinckley loamy sand, 8 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2svm9 Elevation: 0 to 1,480 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Hinckley and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Hinckley

Setting

- *Landform:* Kame terraces, outwash plains, moraines, outwash deltas, kames, eskers, outwash terraces
- Landform position (two-dimensional): Shoulder, toeslope, footslope, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope,
 - riser

Down-slope shape: Linear, convex, concave

Across-slope shape: Convex, linear, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand *Bw2 - 11 to 16 inches:* gravelly loamy sand *BC - 16 to 19 inches:* very gravelly loamy sand *C - 19 to 65 inches:* very gravelly sand

Properties and qualities

Slope: 8 to 15 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 5 percent

Landform: Eskers, outwash terraces, kames, moraines, outwash plains Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest, riser

Down-slope shape: Convex *Across-slope shape:* Convex *Hydric soil rating:* No

Windsor

Percent of map unit: 5 percent

Landform: Outwash deltas, moraines, outwash terraces, eskers, kame terraces, kames, outwash plains

Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope,

riser

Down-slope shape: Convex, concave, linear *Across-slope shape:* Concave, linear, convex *Hydric soil rating:* No

Sudbury

Percent of map unit: 5 percent

Landform: Moraines, outwash deltas, outwash terraces, kame terraces, outwash plains

Landform position (two-dimensional): Backslope, footslope Landform position (three-dimensional): Base slope, tread

Down-slope shape: Concave, linear

Across-slope shape: Linear, concave

Hydric soil rating: No

253D—Hinckley loamy sand, 15 to 25 percent slopes

Map Unit Setting

National map unit symbol: 2svmc Elevation: 0 to 1,460 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Hinckley and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Hinckley

Setting

Landform: Outwash plains, moraines, outwash deltas, kame terraces, kames, eskers, outwash terraces

Landform position (two-dimensional): Backslope

Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser

Down-slope shape: Convex, linear, concave

Across-slope shape: Linear, convex, concave

Parent material: Sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material

A - 1 to 8 inches: loamy sand

Bw1 - 8 to 11 inches: gravelly loamy sand

Bw2 - 11 to 16 inches: gravelly loamy sand

BC - 16 to 19 inches: very gravelly loamy sand

C - 19 to 65 inches: very gravelly sand

Properties and qualities

Slope: 15 to 25 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Salinity, maximum in profile: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water storage in profile: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Merrimac

Percent of map unit: 8 percent Landform: Outwash terraces, eskers, kames, moraines, outwash plains Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope, crest, head slope, nose slope, riser Down-slope shape: Convex Across-slope shape: Convex Hydric soil rating: No

Windsor

Percent of map unit: 5 percent
Landform: Moraines, kame terraces, outwash terraces, eskers, kames, outwash plains, outwash deltas
Landform position (two-dimensional): Backslope
Landform position (three-dimensional): Nose slope, side slope, crest, head slope, riser
Down-slope shape: Convex, linear, concave
Across-slope shape: Linear, convex, concave
Hydric soil rating: No

Sudbury

Percent of map unit: 2 percent
Landform: Moraines, outwash deltas, kame terraces, outwash terraces, eskers, outwash plains
Landform position (two-dimensional): Backslope, footslope
Landform position (three-dimensional): Base slope, tread
Down-slope shape: Concave, linear, convex
Across-slope shape: Linear, concave, convex
Hydric soil rating: No

254B—Merrimac fine sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2tyqs Elevation: 0 to 1,290 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: All areas are prime farmland

Map Unit Composition

Merrimac and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Merrimac

Setting

Landform: Eskers, outwash terraces, kames, moraines, outwash plains Landform position (two-dimensional): Backslope, footslope, shoulder, summit Landform position (three-dimensional): Side slope, crest, tread, riser Down-slope shape: Convex Across-slope shape: Convex

Parent material: Loamy glaciofluvial deposits derived from granite, schist, and gneiss over sandy and gravelly glaciofluvial deposits derived from granite, schist, and gneiss

Typical profile

Ap - 0 to 10 inches: fine sandy loam Bw1 - 10 to 22 inches: fine sandy loam Bw2 - 22 to 26 inches: stratified gravel to gravelly loamy sand 2C - 26 to 65 inches: stratified gravel to very gravelly sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 2 percent
Salinity, maximum in profile: Nonsaline (0.0 to 1.4 mmhos/cm)
Sodium adsorption ratio, maximum in profile: 1.0
Available water storage in profile: Low (about 4.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Sudbury

Percent of map unit: 5 percent Landform: Outwash plains, terraces, deltas Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, dip Down-slope shape: Concave Across-slope shape: Linear Hydric soil rating: No

Hinckley

Percent of map unit: 5 percent Landform: Outwash plains, kames, eskers, deltas Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Head slope, crest, side slope, nose slope, rise Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

Windsor

Percent of map unit: 3 percent Landform: Dunes, deltas, outwash terraces, outwash plains Landform position (two-dimensional): Shoulder Landform position (three-dimensional): Tread, riser Down-slope shape: Convex, linear Across-slope shape: Convex, linear Hydric soil rating: No

Agawam

Percent of map unit: 2 percent
Landform: Moraines, outwash plains, stream terraces, kames, eskers, outwash terraces
Landform position (three-dimensional): Rise
Down-slope shape: Convex
Across-slope shape: Convex
Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Pelham, Massachusetts

Stormwater Management Report

Appendix B – Test Pit Results

- Cold Spring Environmental Consultants Inc.
- 21E Site Investigations
- Subsurface Investigations
- Pollution Remediation
- LSP on Staff
- Forensic Septic Investigations

December 14, 2020

Lucy Conley, P.E. The Berkshire Design Group, Inc, 4 Allen Place Northampton, MA 01060

RE: Soil Evaluations 18-20 & 22 Amherst Road. Pelham, MA

Greetings,

The soil evaluations TP-1 through TP-4 were requested by you and performed by us on December 3, 2020 at the abovementioned property. The excavations were conducted at the locations that you provided on the site Plan, Excavation TP-5 was not completed as subsurface utility locations were interpreted as to close.

The soil evaluation attached (and photos) confirmed the existence of deep, Class A & B (Class 1 & 2) gravelly and stoney coarse sandy substrata to a depth of more than 9 feet below grade and shallow Estimated Seasonal High Groundwater conditions ranged from 58" (TP-4) to 108" (TP-2) below grade. Class 1 Coarse sandy stony stream terrace and outwash was observed in TP-1 through TP-4.

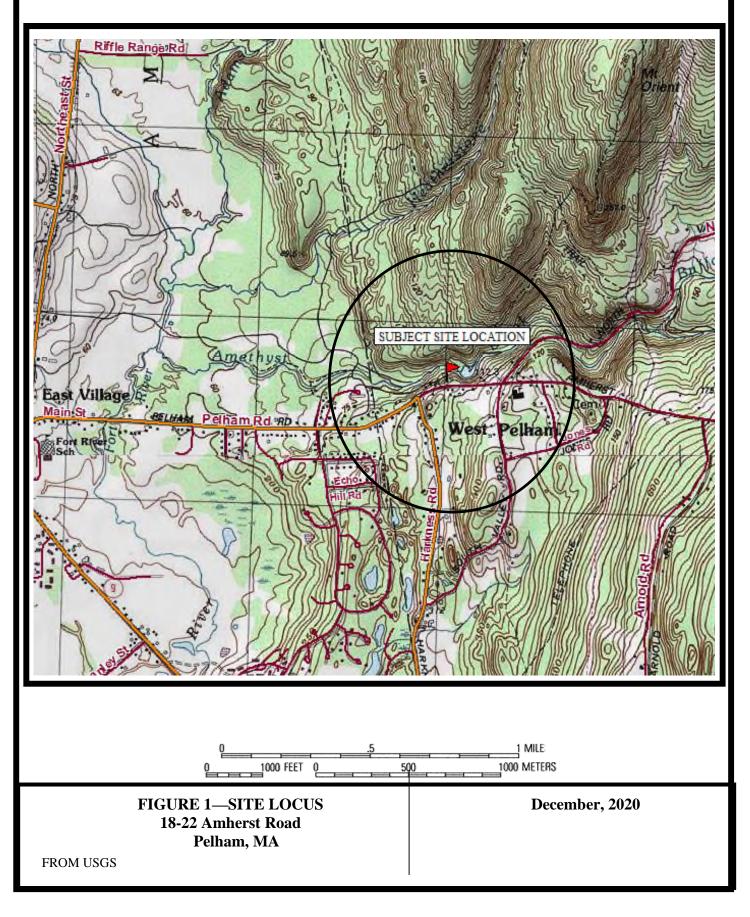
These conditions are consistent with the East to West Stream Terrace slopes along Fort Brook in this portion of Pioneer Valley. Form 11 Soil evaluations are attached. Mass Gis notes the Surficial Geology to consist of Stratified Glacial Deposits. NRCS Maps denote Hinkley Loamy Sand (253B) Soils.

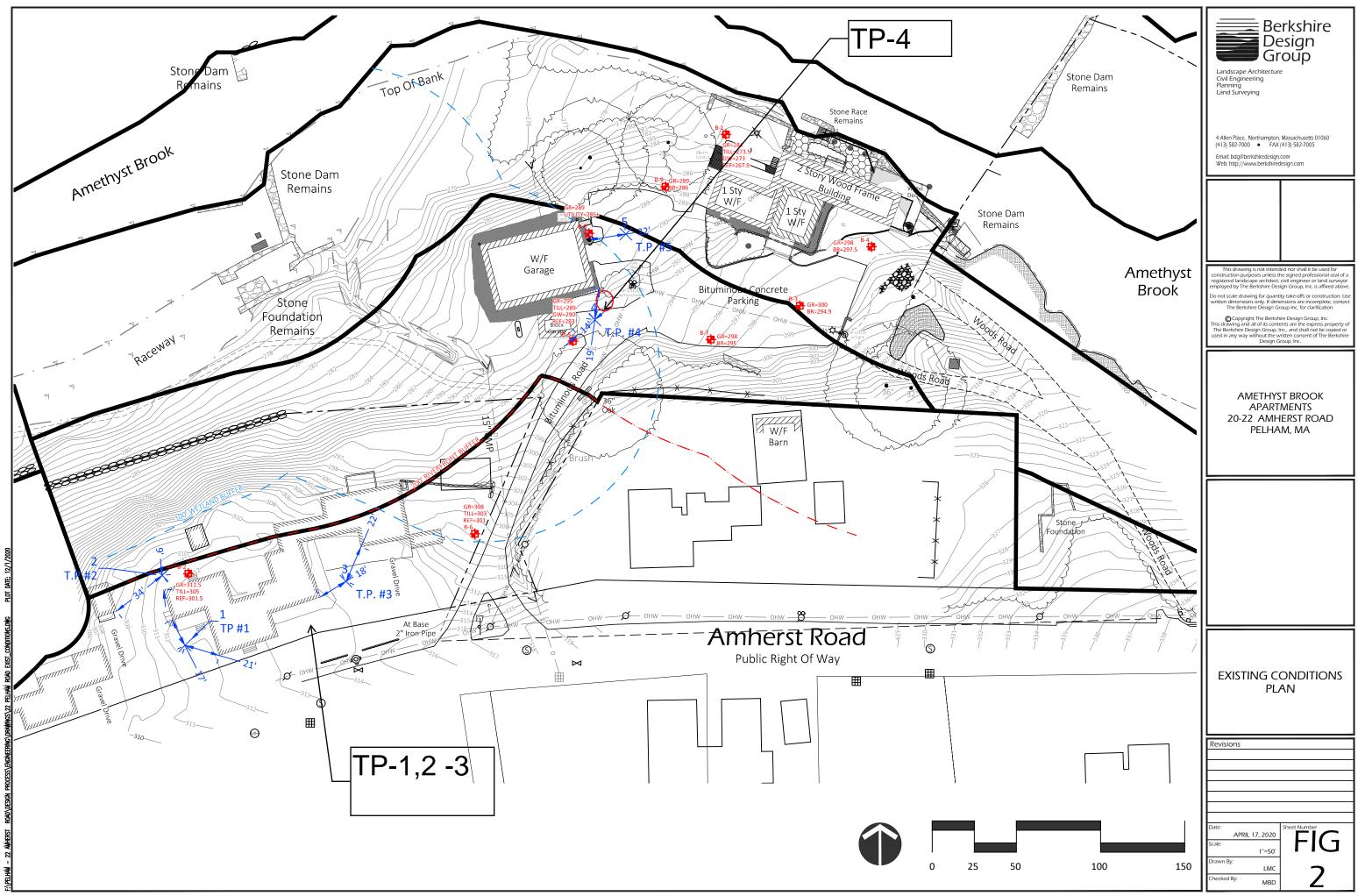
Please feel free to contact me with any questions or further evaluation

Sincerely,

Cold Spring Environmental Consultants, Inc.

Alan E. Weiss, M.S., R.S., L.S.P. Licensed Soil Evaluator # 2568, since 1995 Principal Hydrogeologist Massachusetts Public Health Sanitarian Lic. #933


Attachments: Figures, Photos and Soil reports.


- Percolation Tests
- Septic Designs
- Regulatory Compliance
- Recycling and Solid Waste
- Second Opinions

Cold Spring Environmental Consultants, Inc.

350 Dld Enfield Road Belchertown, MA. 01007 http://www.coldspringenvironmental.com Ph: 413.323.5957 Fax: 413.323.4916 cmail: acwciss@charter.net

A. Facility Information

	C/O Berkshire Des	ign Group							
	Owner Name								
	18-20 Amherst Roa	ad					3-32		
	Street Address						Map/Lot # 01002		
	Pelham				MA				
	City				State		Zip Code		
Β.	. Site Informat	tion							
1.	(Check one)	New Cons	truction	Upgrade		🛛 Repair			
2.	Soil Survey Availat	ble?	🛛 Yes	🗌 No	If yes:	Cal web USDA		253B Soil Map Unit	
	Hinckley Loamy Sa	and				Source		Soli Map Unit	
	Soil Name				Soil Limita	ations			
				—		USGS current	gis		
3.	Surficial Geological	Report Available	? 🖂 Yes	🗌 No	If yes:	Year Published/Source	Publication Scale	Map Unit	
	Stoney, Granular S	stream Outwash			Stream	Terrace			
	Geologic/Parent Materia	al			Landform				
4.	Flood Rate Insurar	се Мар							
	Above the 500-year	flood boundary?	Yes	🗌 No	Within th	he 100-year flood boundary	/? 🗌 Yes	🛛 No	
	Within the 500-year	flood boundary?	🗌 Yes	🛛 No	Within a	velocity zone?	Yes	🛛 No	
5.	Wetland Area:	Wetlands	Conservancy F	Program Map	- Map Unit		Name		
6.	Current Water Res	ource Condition	s (USGS):	Month/Year	Range:	🗌 Above Normal 🛛 I	Normal 🗌 Belov	w Normal	
7.	Other references re	eviewed: -							

C. On-Site Review (minimum of two holes required at every proposed primary and reserved disposal area)

	Deep Observat	tion Hole Number:	1, 2 and 3	12.3.2020 Date	<u>1300</u> Time		- Weather		
1.	Location								
	Ground Elevation	on at Surface of Hole:	shown	Location (identify	on plan):	-			
~		grassy			no			2	
Ζ.	Land Use	(e.g., woodland, agricultural f	ield, vacant lot, etc.)		Surface	Stones		Slope	(%)
		decidous mix		terrace			shown		
		Vegetation		Landform			Position on La	ndscape (attach	n sheet)
3.	Distances from:	Open Water Body	, <u>100'+</u> feet	- Drainage Wa	у	<u>100'+</u> feet	Possible V	Vet Area	50'+ feet
		Property Line	20'+ feet	 Drinking Wat 	er Well	<u>100'+</u> feet	Other		- feet
4.	Parent Material:	Outwash		Unsu	uitable Materi	als Preser	nt: 🗌	Yes	🖂 No
	If Yes:	Disturbed Soil	Fill Material	Impervious Laye	r(s)	Weather	ed/Fractured F	Rock	Bedrock
5.	Groundwater Ol	bserved: 🗌 Yes	🖂 No	If ye	s: <u>Not C</u> Depth	Dbs. Weeping from		Not Obs. Depth Standing	g Water in Hole
	Estimated Deptl	h to High Groundwater:	80-108"+ inches	eleva	tion	-			

C. On-Site Review (continued)

Deep Observation Hole Number:

1&2

Donth (in)	Soil Horizon/	Soil Matrix: Color-	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-10"	А	10 YR 3.2				FSL			FRIABLE		mixed
10-28"	Bw	10 YR 5.6				FS				Old	System
28-80"	C1	2.5 y 5.6	-	-	-	CS	10	25	Granular	Bouldery	Outwash
Large	Rock	at 80"									
0-48"	fill	10 YR 5.8				FS					Disturbed
48-108"	С	2.5 Y 5.6	-	-	-	CS	10	25	Granular	Bouldery	Outwash

Additional Notes:

3

C. On-Site Review (continued)

Deep Observation Hole Number:

Denth (in)	Soil Horizon/	/ Soil Matrix: Color-	Redoximorphic Features (mottles)		Soil Texture	Coarse Fragments % by Volume		Soil	Soil Consistence	Other	
Depth (in.)	Layer	Moist (Munsell)	Depth	Color	Percent	(USDA)	Gravel	Cobbles & Stones	Structure	(Moist)	
0-12"	А	10 YR 3.2				FSL					
12-26"	В	10 YR 5.6				FS					
26-96"	С	2.5 y 5.6	-	-	-	CS	10	25	Granular	Bouldery	Outwash

Additional Notes:

D. Determination of High Groundwater Elevation

1. Method Used:

Depth observed standing water in all	acquisition hole	A. not		B. not	
Depth observed standing water in ob	Servation noie	inches		inches	
Depth weeping from side of observa	tion hole	A. not		B. not	
		inches		inches	
Depth to soil redoximorphic features	(mottloc)	A. 80-108"+		B. 80-108"+	
	(mottles)	inches		inches	
Groundwater adjustment (USGS me	thodology)	Α.		В.	
	(inouology)	inches		inches	
2.					
Index Well Number	Reading Date		Index Well L	_evel	
Adjustment Factor Adjusted G		ter Level			

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
 - 🛛 Yes 🗌 No
 - b. If yes, at what depth was it observed? Upper boundary:

ndary: <u>48</u> inches Lower boundary:

80-108" inches

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator ALAN WEISS, RS #933, SE #2568, Cold Spring Env. Inc. Typed or Printed Name of Soil Evaluator / License #

12/01/2020
Date

Date 6/1995

Date of Soil Evaluator Exam

Name of Board of Health Witness

Board of Health

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

A. Facility Information

	C/O Berkshire Des	ign Group							
	Owner Name								
	220 Amherst Road						3-30 Map/Lot # 01002		
	Street Address								
	Pelham				MA				
	City				State		Zip Code		
B	. Site Informat	ion							
1.	(Check one)	New Cons	truction	Upgrade		🛛 Repair			
2.	Soil Survey Availab	ole?	🛛 Yes	🗌 No	If yes:	Cal web USDA		253B Soil Map Unit	
	Hinckley Loamy Sa	ind							
	Soil Name				Soil Limita	ations			
3.	Surficial Geological	Report Available	? 🛛 Yes	🗌 No	If yes:	USGS current Year Published/Source	gis Publication Scale	Map Unit	
	Stoney, Granular S	tream Outwash			Stream	Terrace		·	
	Geologic/Parent Materia				Landform				
4.	Flood Rate Insuran	се Мар							
	Above the 500-year	flood boundary?	Yes	🗌 No	Within th	he 100-year flood boundary	/? 🗌 Yes	🛛 No	
	Within the 500-year	flood boundary?	Yes	🛛 No	Within a	velocity zone?	Yes	🛛 No	
5.	Wetland Area:	Wetlands	Conservancy P	rogram Map	- Map Unit		Name		
6.	Current Water Res	ource Condition	s (USGS):	Month/Year	Range:	Above Normal 🛛 I	Normal 🗌 Belov	w Normal	
7.	Other references re	eviewed: –							

C. On-Site Review (minimum of two holes required at every proposed primary and reserved disposal area)

	Deep Observat	tion Hole Number:	<u>TP-4</u>	12.3.2020 Date	1300 Time	 Weathe	r	
1.	Location							
	Ground Elevation	on at Surface of Hole:	shown	Location (identify	on plan):	-		
~		grassy			no		5	
2.	Land Use	(e.g., woodland, agricultural f	ield, vacant lot, etc.)		Surface Ste	ones	Slope (%)
		decidous mix		terrace		shown		
		Vegetation		Landform		Position of	on Landscape (attach	sheet)
3.	Distances from:	Open Water Body	<u>100'+</u> feet	 Drainage Way 		100'+ Possil	ble Wet Area	50'+ feet
		Property Line	20'+ feet	 Drinking Wate 	rvveli –	100'+ Other		- feet
4.	Parent Material	Outwash		Unsui	table Material	s Present:	🗌 Yes	🛛 No
	If Yes:	Disturbed Soil	Fill Material	Impervious Layer(s) 🗌	Weathered/Fractu	red Rock 🛛 🛛 B	edrock
5.	Groundwater O	bserved: 🛛 Yes	🗌 No	If yes:	76" Depth We	eeping from Pit	 Depth Standing	Water in Hole
	Estimated Dept	h to High Groundwater:	58"+ inches	elevatio	on			

C. On-Site Review (continued)

Deep Observation Hole Number:

TP-4

Depth (in.)	Soil Horizon/	Soil Matrix: Color-		imorphic Fe (mottles)	atures	Soil Texture (USDA)			Soil	Soil Consistence	Other
Depth (m.)	Layer	Moist (Munsell)	Depth	Color	Percent		Gravel	Cobbles & Stones	Structure	(Moist)	other
0-36"	Fill	10 YR 3.2				FSL					Disturbed
36-110"	C1	2.5 Y5.6	58"	10YR2.2	10	CS	10	10	Granular	Bouldery	Outwash

Additional Notes:

D. Determination of High Groundwater Elevation

1. Method Used:

	Depth observed standing water in observ	ation hole <u>A. not</u>			B. not	
		alion noie	inches		inches	
	Depth weeping from side of observation h		A. 76"		B. not	
		IOIE	inches		inches	
	Depth to soil redoximorphic features (mo	ttloc)	A. 58"+		B. not	
		ulles)	inches		inches	
	Groundwater adjustment (USGS method		Α.		В.	
		Jiogy)	inches		inches	
2.						
	Index Well Number	Reading Date		Index Well L	evel	
	Adjustment Factor Adjusted Gro		Level			

E. Depth of Pervious Material

- 1. Depth of Naturally Occurring Pervious Material
 - a. Does at least four feet of naturally occurring pervious material exist in all areas observed throughout the area proposed for the soil absorption system?
 - 🛛 Yes 🗌 No
 - b. If yes, at what depth was it observed? Upper boundary:

undary: <u>36"</u> inches

Lower boundary:

110" inches

```
t5form11.Soil Evaluations 22 Amherst Road TP-4,.doc • rev. 3/13
```

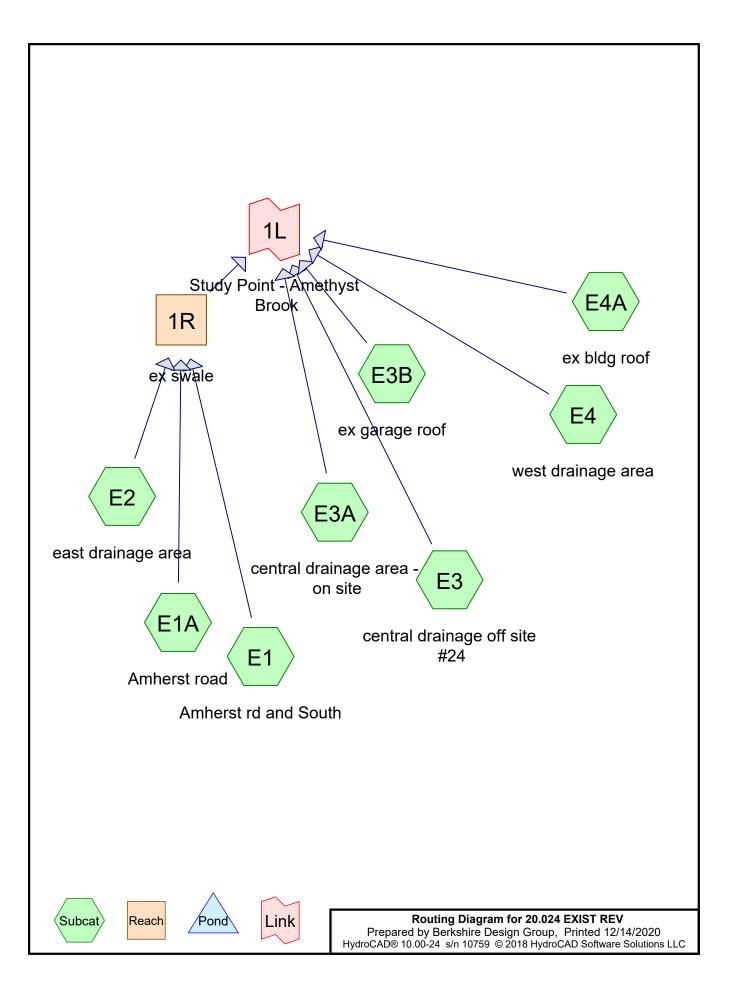

F. Certification

I certify that I am currently approved by the Department of Environmental Protection pursuant to 310 CMR 15.017 to conduct soil evaluations and that the above analysis has been performed by me consistent with the required training, expertise and experience described in 310 CMR 15.017. I further certify that the results of my soil evaluation, as indicated in the attached Soil Evaluation Form, are accurate and in accordance with 310 CMR 15.100 through 15.107.

Signature of Soil Evaluator ALAN WEISS, RS #933, SE #2568, Cold Spring Env. Inc. Typed or Printed Name of Soil Evaluator / License # 12/01/2020 Date

6/1995

Date of Soil Evaluator Exam


Name of Board of Health Witness

Board of Health

Note: In accordance with 310 CMR 15.018(2) this form must be submitted to the approving authority within 60 days of the date of field testing, and to the designer and the property owner with <u>Percolation Test Form 12</u>.

Pelham, Massachusetts

Appendix C – Stormwater Hydrology Calculations

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 4007 MA Amherst Hampshire County

Area Listing (all nodes)

Are	ea CN	Description
(acre	s)	(subcatchment-numbers)
0.70	6 49	50-75% Grass cover, Fair, HSG A (E1, E1A, E2, E3, E3A, E4A)
0.03	88 49	Drip edge around buildings (E3A)
0.02	28 96	Gravel surface, HSG A (E2)
1.12	28 98	Paved parking, HSG A (E1, E1A, E2, E3, E3A, E4, E4A)
0.01	9 98	Paved parking, HSG B (E1)
0.05	6 98	Roofs, HSG A (E3B)
2.79	91 36	Woods, Fair, HSG A (E1, E2, E3, E3A, E4)
0.70	60	Woods, Fair, HSG B (E1)
5.46	69 55	TOTAL AREA

Soil Listing (all nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
4.709	HSG A	E1, E1A, E2, E3, E3A, E3B, E4, E4A
0.722	HSG B	E1
0.000	HSG C	
0.000	HSG D	
0.038	Other	E3A
5.469		TOTAL AREA

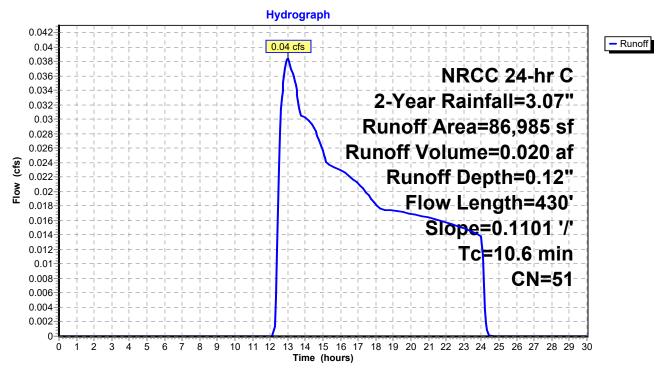
20.024 EXIST REV

Prepared by Berkshire Design Group	
HydroCAD® 10.00-24 s/n 10759 © 2018 HydroCAD Software Solutions LLC	

Printed 12/14/2020 Page 5

				•	•		
HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
 0.706	0.000	0.000	0.000	0.000	0.706	50-75% Grass cover, Fair	E1,
							E1A,
							E2, E3,
							E3A,
							E4A
0.000	0.000	0.000	0.000	0.038	0.038	Drip edge around buildings	E3A
0.028	0.000	0.000	0.000	0.000	0.028	Gravel surface	E2
1.128	0.019	0.000	0.000	0.000	1.146	Paved parking	E1,
							E1A,
							E2, E3,
							E3A,
							E4, E4A
0.056	0.000	0.000	0.000	0.000	0.056	Roofs	E3B
2.791	0.704	0.000	0.000	0.000	3.495	Woods, Fair	E1, E2,
							E3,
							E3A, E4
4.709	0.722	0.000	0.000	0.038	5.469	TOTAL AREA	

Ground Covers (all nodes)


Summary for Subcatchment E1: Amherst rd and South

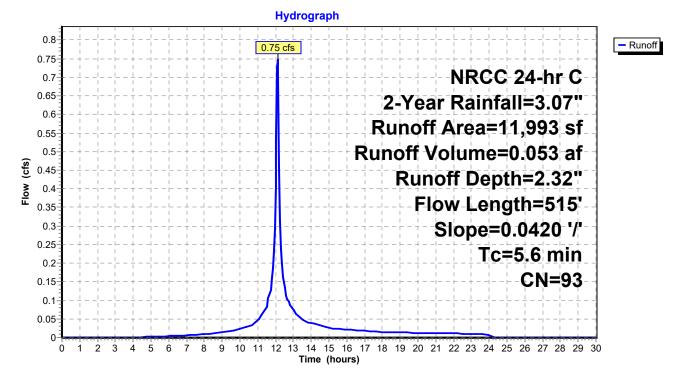
Runoff = 0.04 cfs @ 13.01 hrs, Volume= 0.020 af, Depth= 0.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

Α	rea (sf)	CN E	Description				
	7,024	98 F	aved park	ing, HSG A	N		
	806	98 F	aved park	ing, HSG B			
	39,100	36 V	Voods, Fai	r, HSG A			
	30,655	60 V	Voods, Fai	r, HSG B			
	9,400	49 5	0-75% Gra	ass cover, F	Fair, HSG A		
	86,985	51 V	Veighted A	verage			
	79,155	9	1.00% Per	vious Area			
	7,830	9	.00% Impe	ervious Area	a		
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
10.6	430	0.1101	0.68		Lag/CN Method,		
					Contour Length= 9,580' Interval= 1'		

Subcatchment E1: Amherst rd and South

Summary for Subcatchment E1A: Amherst road


[49] Hint: Tc<2dt may require smaller dt

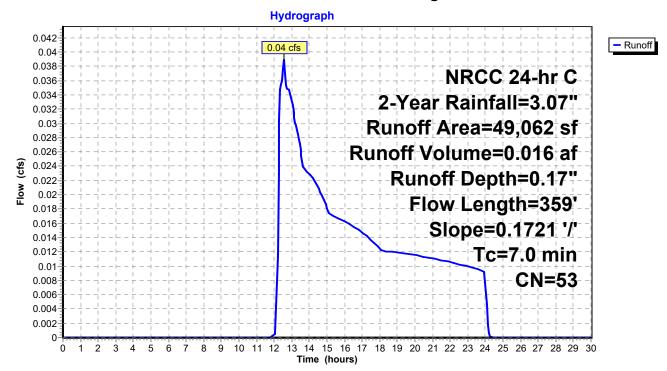
Runoff = 0.75 cfs @ 12.12 hrs, Volume= 0.053 af, Depth= 2.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

A	rea (sf)	CN I	Description					
	10,800	98 I	Paved parking, HSG A					
	1,193	49 5	50-75% Grass cover, Fair, HSG A					
	11,993	93 V	Neighted A	verage				
	1,193	ę	9.95% Perv	ious Area				
	10,800	ę	90.05% Imp	pervious Ar	ea			
Tc	Length	Slope		Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
5.6	515	0.0420	1.53		Lag/CN Method,			
					Contour Length= 504' Interval= 1'			

Subcatchment E1A: Amherst road

Summary for Subcatchment E2: east drainage area

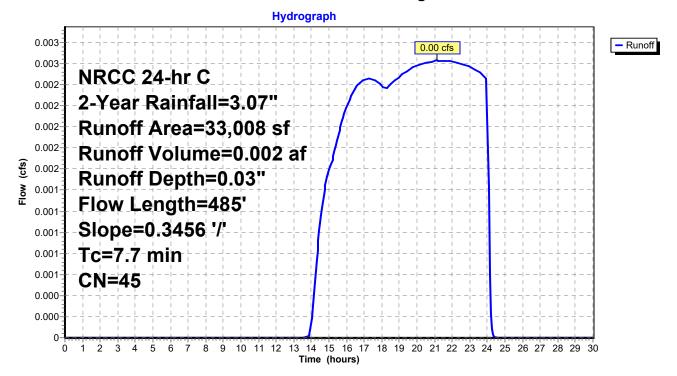

Runoff = 0.04 cfs @ 12.54 hrs, Volume= 0.016 af, Depth= 0.17"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

A	rea (sf)	CN E	Description						
	10,891	98 F	98 Paved parking, HSG A						
	31,957	36 V	Woods, Fair, HSG A						
	5,000	49 5	0-75% Gra	ass cover, l	Fair, HSG A				
	1,214	96 C	Gravel surfa	ace, HSG A	Α				
	49,062	53 V	Veighted A	verage					
	38,171	7	7.80% Per	vious Area	l de la constante d				
	10,891	2	2.20% Imp	ervious Ar	ea				
Tc	Length	Slope	Velocity	Capacity	Description				
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)					
7.0	359	0.1721	0.86		Lag/CN Method,				
					Contour Longth 9 112' Interval 1'				

Contour Length= 8,443' Interval= 1

Subcatchment E2: east drainage area


Summary for Subcatchment E3: central drainage off site #24

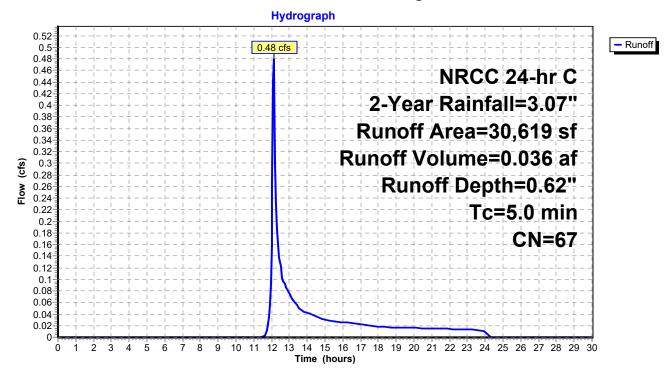
Runoff = 0.00 cfs @ 21.16 hrs, Volume= 0.002 af, Depth= 0.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

_	A	rea (sf)	CN	Description						
		3,810	98	Paved parking, HSG A						
		24,198	36	Woods, Fair, HSG A						
_		5,000	49	50-75% Gra	ass cover, l	Fair, HSG A				
		33,008	45	Neighted A	verage					
		29,198	1	38.46% Pei	vious Area					
		3,810		11.54% Impervious Area						
_	Tc (min)	Length (feet)	Slope (ft/ft)		Capacity (cfs)	Description				
	7.7	485	0.3456	1.05		Lag/CN Method, Contour Length= 11.408' Interval= 1'				

Subcatchment E3: central drainage off site #24

Summary for Subcatchment E3A: central drainage area - on site

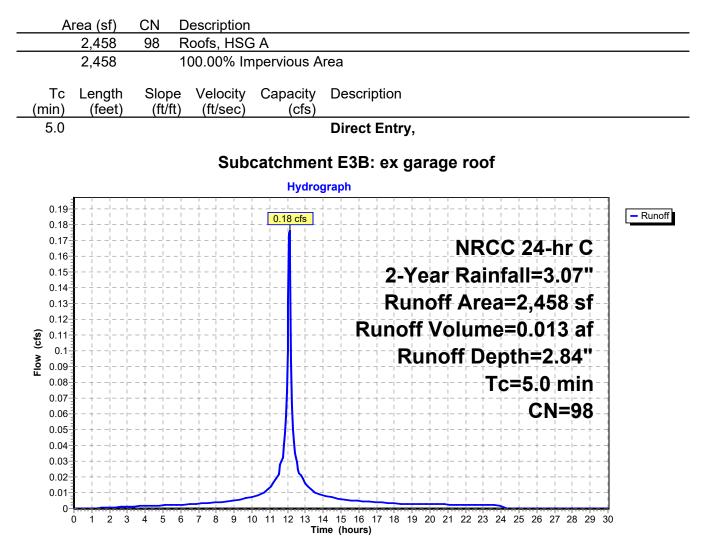

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.48 cfs @ 12.13 hrs, Volume= 0.036 af, Depth= 0.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

Α	rea (sf)	CN I	Description							
	12,631	98 I	Paved park	ing, HSG A	Α					
	10,000	49 క	50-75% Grass cover, Fair, HSG A							
	6,338	36	Noods, Fai	Voods, Fair, HSG A						
*	1,650	49 I	Drip edge a	round build	dings					
	30,619	67 Weighted Average								
	17,988	Į	58.75% Pervious Area							
	12,631	4	41.25% Impervious Area							
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	1					
5.0					Direct Entry,					

Subcatchment E3A: central drainage area - on site



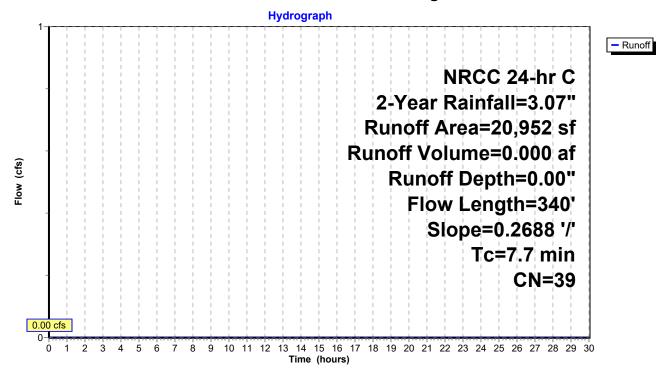
Summary for Subcatchment E3B: ex garage roof

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.18 cfs @ 12.11 hrs, Volume= 0.013 af, Depth= 2.84"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

Summary for Subcatchment E4: west drainage area


[45] Hint: Runoff=Zero

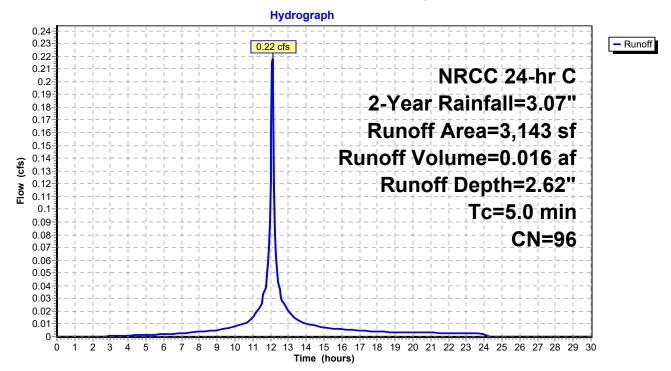
Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

Ar	rea (sf)	CN	Description		
	967	98	Paved park	ing, HSG A	
	19,985	36	Woods, Fai	r, HSG A	
	20,952	39	Weighted A	verage	
	19,985		95.38% Pei	vious Area	
	967		4.62% Impe	ervious Area	a
_					
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.7	340	0.2688	0.74		Lag/CN Method,
					Contour Length= 5,632' Interval= 1'

Subcatchment E4: west drainage area

Summary for Subcatchment E4A: ex bldg roof

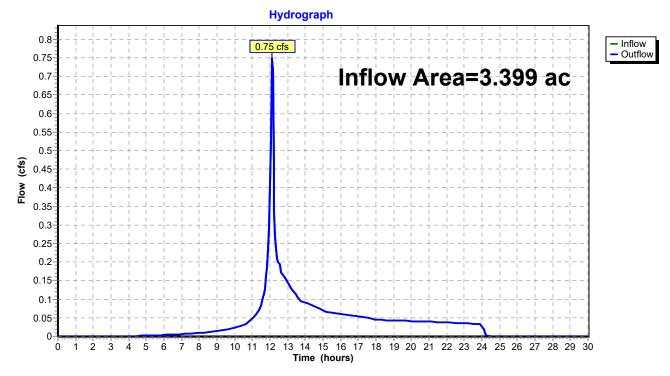

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.22 cfs @ 12.11 hrs, Volume= 0.016 af, Depth= 2.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

Α	rea (sf)	CN	Description								
	3,000	98	Paved parking, HSG A								
	143	49	50-75% Gra	0-75% Grass cover, Fair, HSG A							
	3,143	96	Weighted A	verage							
	143										
	3,000		95.45% Imp	pervious Ar	rea						
Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	1						
5.0					Direct Entry,						

Subcatchment E4A: ex bldg roof

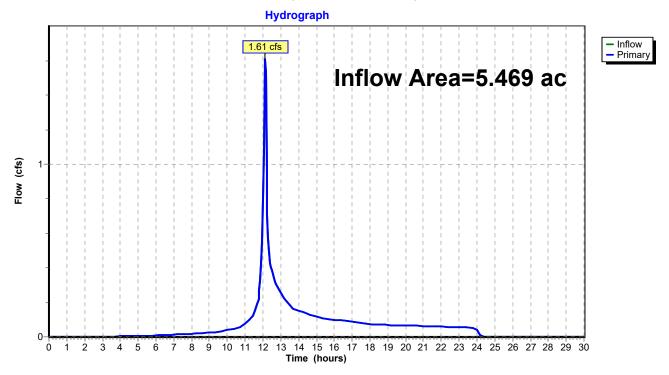


Summary for Reach 1R: ex swale

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.399 ac, 19	.94% Imperviou	s, Inflow Dep	th = 0.31"	for 2-Year event
Inflow	=	0.75 cfs @ 1	12.12 hrs, Volur	ne= 0).089 af	
Outflow	=	0.75 cfs @ 1	12.12 hrs, Volur	ne= 0	0.089 af, Atte	en= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



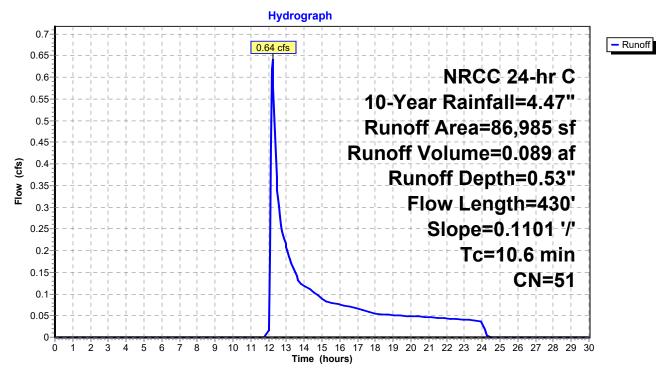
Reach 1R: ex swale

Summary for Link 1L: Study Point - Amethyst Brook

Inflow Area =	5.469 ac, 21.99% Impervious, Inflow	Depth = 0.34"	for 2-Year event
Inflow =	1.61 cfs @ 12.12 hrs, Volume=	0.157 af	
Primary =	1.61 cfs @ 12.12 hrs, Volume=	0.157 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link 1L: Study Point - Amethyst Brook


Summary for Subcatchment E1: Amherst rd and South

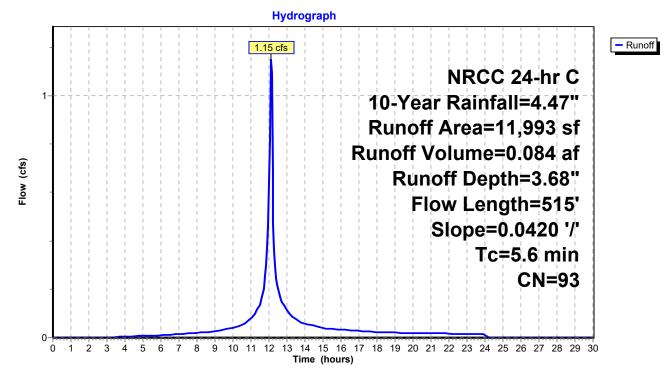
Runoff = 0.64 cfs @ 12.22 hrs, Volume= 0.089 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

A	rea (sf)	CN [Description		
	7,024	98 F	Paved park	ing, HSG A	N
	806	98 F	Paved park	ing, HSG B	
	39,100	36 V	Voods, Fai	r, HSG A	
	30,655	60 V	Voods, Fai	r, HSG B	
	9,400	49 5	50-75% Gra	ass cover, F	Fair, HSG A
	86,985	51 V	Veighted A	verage	
	79,155	ç	91.00% Per	vious Area	
	7,830	ę).00% Impe	rvious Are	а
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
10.6	430	0.1101	0.68		Lag/CN Method,
					Contour Length= 9,580' Interval= 1'

Subcatchment E1: Amherst rd and South

Summary for Subcatchment E1A: Amherst road

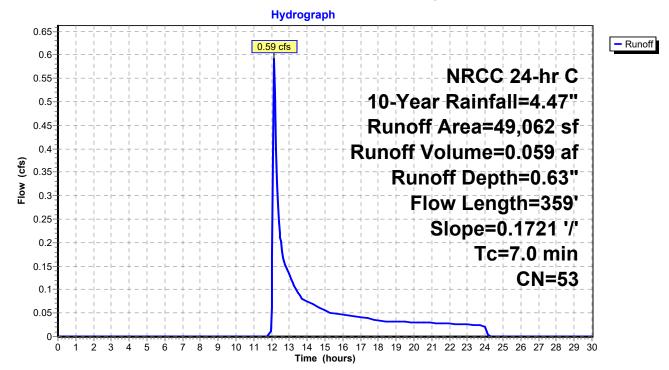

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.15 cfs @ 12.12 hrs, Volume= 0.084 af, Depth= 3.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

A	rea (sf)	CN I	Description		
	10,800	98 I	Paved park	ing, HSG A	
	1,193	49 5	50-75% Gra	ass cover, F	Fair, HSG A
	11,993	93 \	Neighted A	verage	
	1,193	ę	9.95% Perv	ious Area	
	10,800	ę	90.05% Imp	pervious Are	ea
_					
Tc	Length	Slope	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.6	515	0.0420	1.53		Lag/CN Method,
					Contour Length= 504' Interval= 1'

Subcatchment E1A: Amherst road

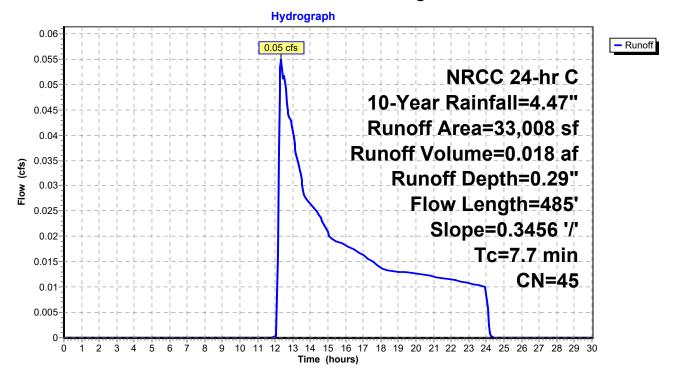

0.59 cfs @ 12.16 hrs, Volume= 0.059 af, Depth= 0.63" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

_	A	rea (sf)	CN E	Description			
		10,891	98 F	aved park	ing, HSG A	N	
		31,957	36 V	Voods, Fai	r, HSG A		
		5,000	49 5	0-75% Gra	ass cover, F	⁻ air, HSG A	
_		1,214	96 0	Gravel surfa	ace, HSG A	A	
		49,062	53 V	Veighted A	verage		
		38,171	7	7.80% Per	vious Area		
		10,891	2	2.20% Imp	ervious Ar	ea	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	7.0	359	0.1721	0.86		Lag/CN Method,	
						Contour Longth - 8 1/3' Interval - 1'	

Contour Length= 8,443' Interval= 1

Subcatchment E2: east drainage area

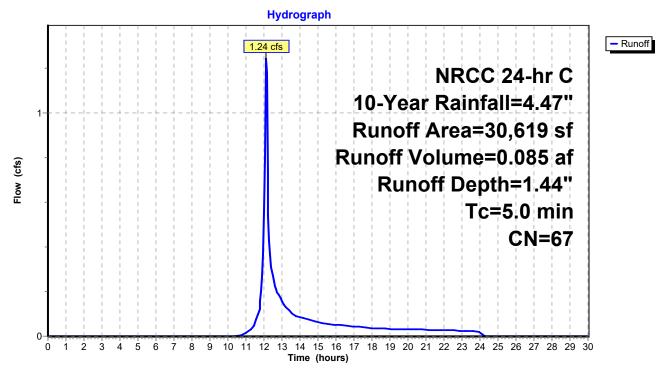

Summary for Subcatchment E3: central drainage off site #24

0.05 cfs @ 12.35 hrs, Volume= 0.018 af, Depth= 0.29" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

_	A	rea (sf)	CN [Description							
		3,810	98 F	Paved parking, HSG A							
		24,198	36 \	Voods, Fai	r, HSG A						
_		5,000	49 5	50-75% Gra	ass cover, F	Fair, HSG A					
		33,008	45 \	Veighted A	verage						
		29,198	8	88.46% Pervious Area							
		3,810		1.54% Imp	pervious Ar	ea					
	Тс	Length	Slope	Velocitv	Capacity	Description					
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description					
-	7.7	485	0.3456	1.05	(010)	Lag/CN Method,					
		100	0.0100			Contour Length= 11.408' Interval= 1'					

Subcatchment E3: central drainage off site #24

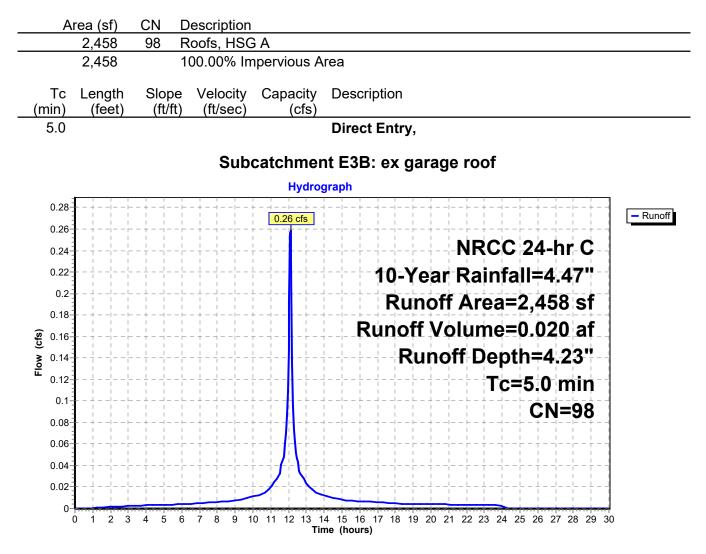

[49] Hint: Tc<2dt may require smaller dt

Runoff = 1.24 cfs @ 12.12 hrs, Volume= 0.085 af, Depth= 1.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

Α	rea (sf)	CN	Description									
	12,631	98	Paved park	Paved parking, HSG A								
	10,000	49	50-75% Gra	50-75% Grass cover, Fair, HSG A								
	6,338	36	Woods, Fai	Voods, Fair, HSG A								
*	1,650	49	Drip edge a	round build	dings							
	30,619	67	Weighted A									
	17,988		58.75% Per	vious Area	a							
	12,631		41.25% Imp	pervious Are	rea							
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	Description							
5.0					Direct Entry,							

Subcatchment E3A: central drainage area - on site

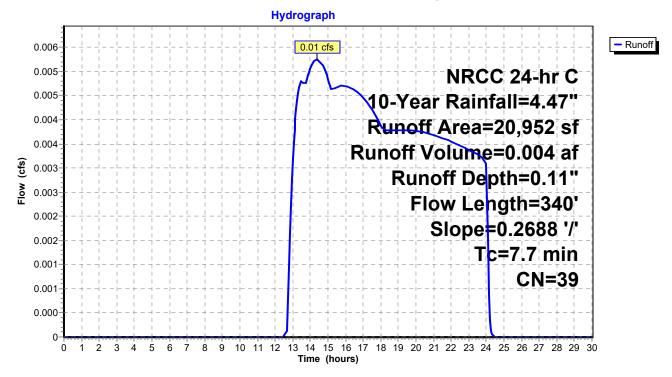


Summary for Subcatchment E3B: ex garage roof

[49] Hint: Tc<2dt may require smaller dt

0.26 cfs @ 12.11 hrs, Volume= 0.020 af, Depth= 4.23" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"


Summary for Subcatchment E4: west drainage area

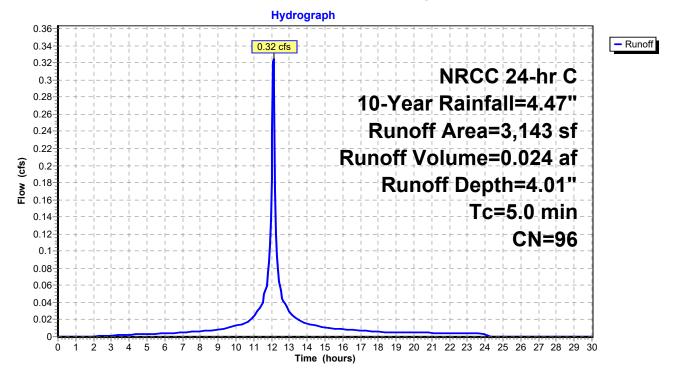
Runoff = 0.01 cfs @ 14.37 hrs, Volume= 0.004 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

A	rea (sf)	CN	Description		
	967	98	Paved park	ing, HSG A	
	19,985	36	Woods, Fai	r, HSG A	
	20,952		Weighted A		
	19,985	9	95.38% Pei	vious Area	
	967	4	4.62% Impe	ervious Area	a
-		~		o	
Tc	Length	Slope	,	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
7.7	340	0.2688	0.74		Lag/CN Method,
					Contour Length= 5,632' Interval= 1'

Subcatchment E4: west drainage area

Summary for Subcatchment E4A: ex bldg roof

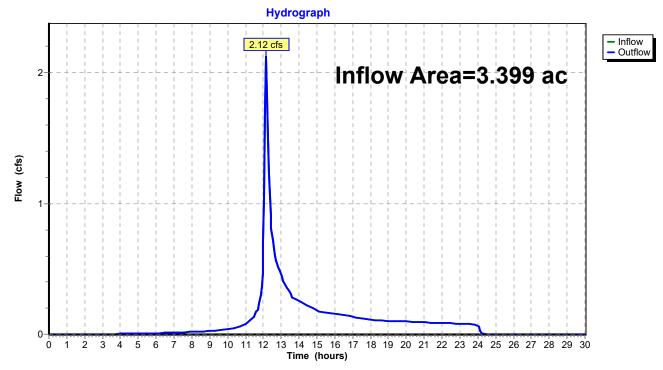

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.32 cfs @ 12.11 hrs, Volume= 0.024 af, Depth= 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

Α	rea (sf)	CN	Description								
	3,000	98	Paved parking, HSG A								
	143	49	50-75% Gra	i0-75% Grass cover, Fair, HSG A							
	3,143	96	Weighted A	verage							
	143										
	3,000		95.45% lmp	pervious Ar	ea						
Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	Description						
5.0					Direct Entry,						

Subcatchment E4A: ex bldg roof

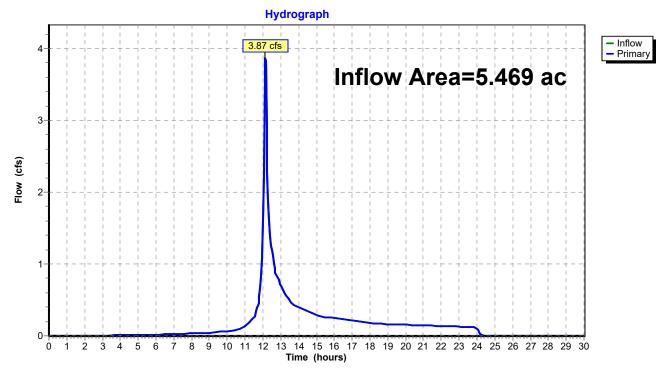


Summary for Reach 1R: ex swale

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.399 ac, 19.94% Impervious, Inflow Depth = 0.82" for 10-Year e	vent
Inflow	=	2.12 cfs @ 12.15 hrs, Volume= 0.232 af	
Outflow	=	2.12 cfs @ 12.15 hrs, Volume= 0.232 af, Atten= 0%, Lag= 0	0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs



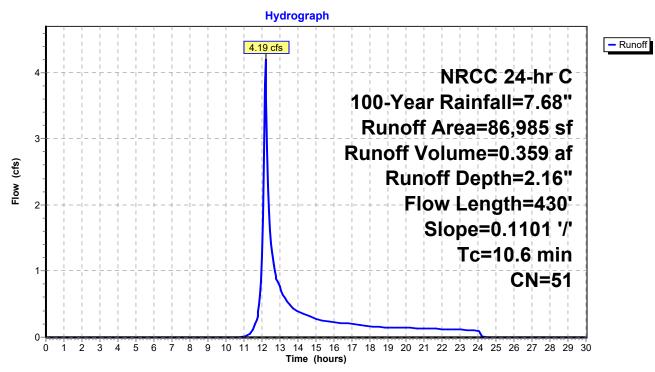
Reach 1R: ex swale

Summary for Link 1L: Study Point - Amethyst Brook

Inflow Area	a =	5.469 ac, 21.99% Impervious, Inflow Depth = 0.84" for 10-Year event	
Inflow	=	3.87 cfs @ 12.14 hrs, Volume= 0.383 af	
Primary	=	3.87 cfs @ 12.14 hrs, Volume= 0.383 af, Atten= 0%, Lag= 0.0 min	

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link 1L: Study Point - Amethyst Brook


Summary for Subcatchment E1: Amherst rd and South

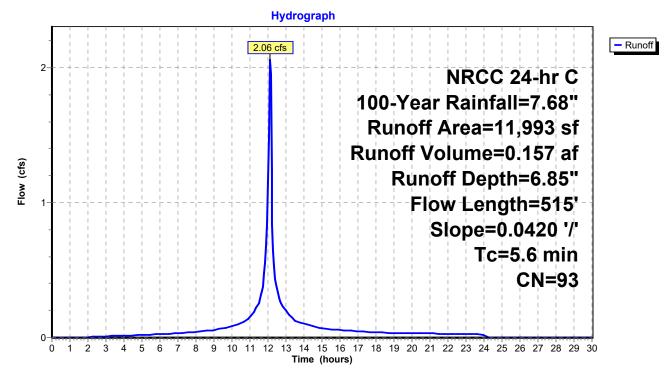
Runoff = 4.19 cfs @ 12.19 hrs, Volume= 0.359 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

A	rea (sf)	CN [Description				
	7,024	98 F	Paved park	ing, HSG A	N N N N N N N N N N N N N N N N N N N		
	806	98 F	Paved park	ing, HSG B			
	39,100	36 V	Voods, Fai	r, HSG A			
	30,655	60 V	Woods, Fair, HSG B				
	9,400	49 5	49 50-75% Grass cover, Fair, HSG A				
	86,985	51 V	Veighted A	verage			
	79,155	91.00% Pervious Area					
	7,830	ç).00% Impe	ervious Area	а		
Тс	Length	Slope		Capacity	Description		
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)			
10.6	430	0.1101	0.68		Lag/CN Method,		
					Contour Length= 9,580' Interval= 1'		

Subcatchment E1: Amherst rd and South

Summary for Subcatchment E1A: Amherst road


[49] Hint: Tc<2dt may require smaller dt

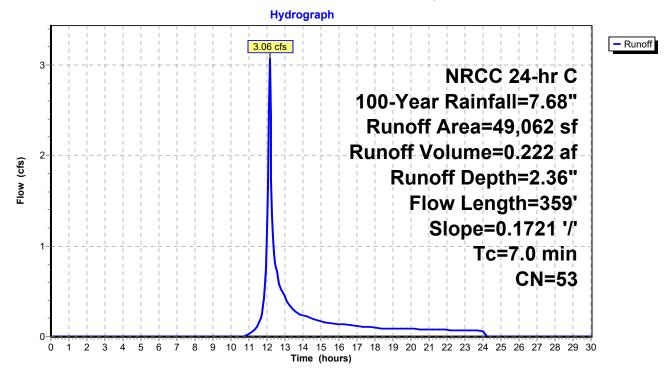
Runoff = 2.06 cfs @ 12.12 hrs, Volume= 0.157 af, Depth= 6.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

A	rea (sf)	CN [Description		
	10,800	98 F	Paved park	ing, HSG A	
	1,193	49 5	50-75% Gra	ass cover, F	Fair, HSG A
	11,993	93 \	Veighted A	verage	
	1,193	ę	9.95% Perv	ious Area	
	10,800	ç	90.05% Imp	pervious Are	ea
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
5.6	515	0.0420	1.53		Lag/CN Method,
					Contour Length= 504' Interval= 1'

Subcatchment E1A: Amherst road

Summary for Subcatchment E2: east drainage area

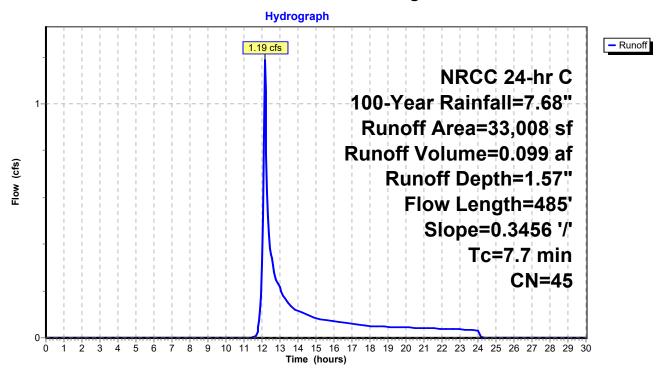

Runoff = 3.06 cfs @ 12.15 hrs, Volume= 0.222 af, Depth= 2.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

_	A	rea (sf)	CN [Description					
		10,891	98 F	Paved park	ing, HSG A	A			
		31,957	36 V	Voods, Fai	r, HSG A				
		5,000	49 5	50-75% Gra	ass cover, l	Fair, HSG A			
		1,214	96 (96 Gravel surface, HSG A					
		49,062	53 V	Veighted A	verage				
		38,171	7	7.80% Pei	vious Area	1			
		10,891	2	2.20% Imp	pervious Ar	ea			
	Tc	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.0	359	0.1721	0.86		Lag/CN Method,			
						Contour Longth 9 442' Interval 1'			

Contour Length= 8,443' Interval= 1

Subcatchment E2: east drainage area


Summary for Subcatchment E3: central drainage off site #24

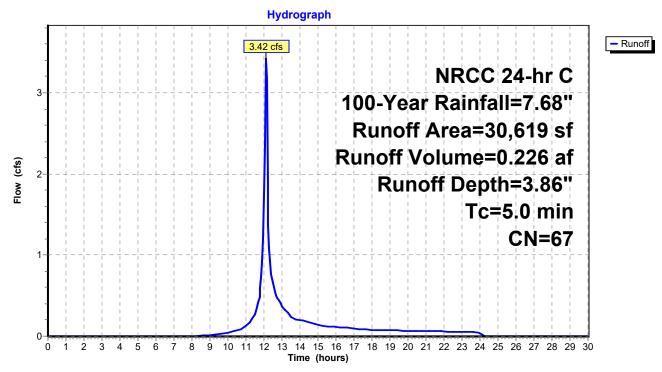
Runoff = 1.19 cfs @ 12.16 hrs, Volume= 0.099 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

Are	a (sf)	CN [Description					
	3,810	98 F	Paved park	ing, HSG A				
24	4,198	36 \	Voods, Fai					
	5,000	49 5	50-75% Grass cover, Fair, HSG A					
33	3,008	45 \	Veighted A	verage				
29	9,198	8	38.46% Per	vious Area				
:	3,810		1.54% Imp	pervious Are	ea			
Tc l	_ength	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
7.7	485	0.3456	1.05		Lag/CN Method,			
					Contour Length= 11,408' Interval= 1'			

Subcatchment E3: central drainage off site #24

Summary for Subcatchment E3A: central drainage area - on site

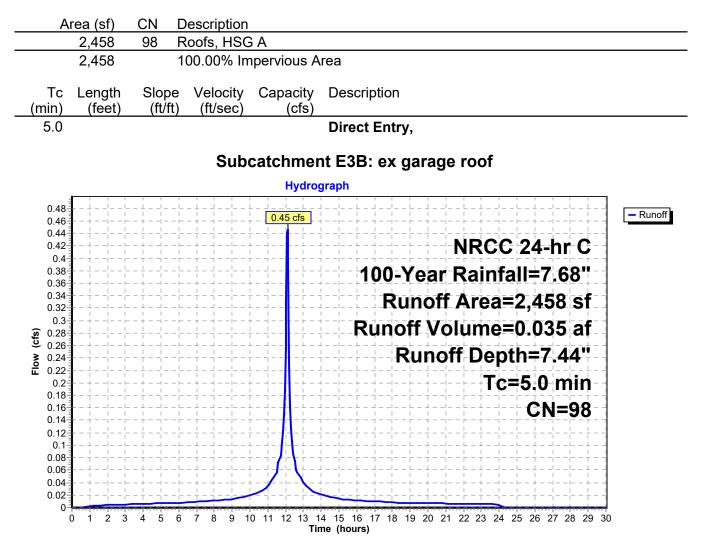

[49] Hint: Tc<2dt may require smaller dt

Runoff = 3.42 cfs @ 12.12 hrs, Volume= 0.226 af, Depth= 3.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	A	rea (sf)	CN	Description					
		12,631	98	Paved park	ing, HSG A	4			
		10,000	49	50-75% Gra	ass cover, F	Fair, HSG A			
		6,338	36	Noods, Fair, HSG A					
*		1,650	49	Drip edge around buildings					
		30,619 67 Weighted Average							
		17,988		58.75% Pervious Area					
		12,631		41.25% Imp	pervious Are	rea			
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	5.0					Direct Entry,			

Subcatchment E3A: central drainage area - on site

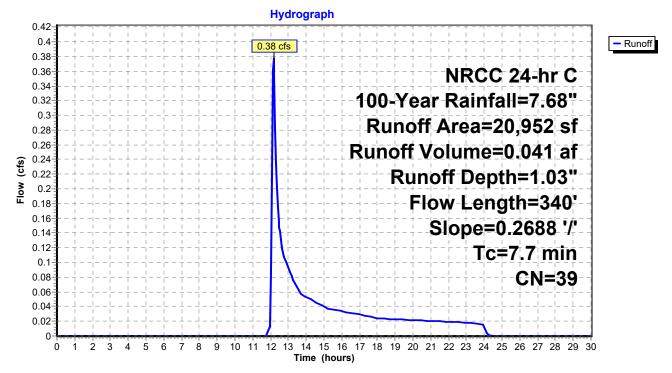

Summary for Subcatchment E3B: ex garage roof

Page 31

[49] Hint: Tc<2dt may require smaller dt

0.45 cfs @ 12.11 hrs, Volume= 0.035 af, Depth= 7.44" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"


Summary for Subcatchment E4: west drainage area

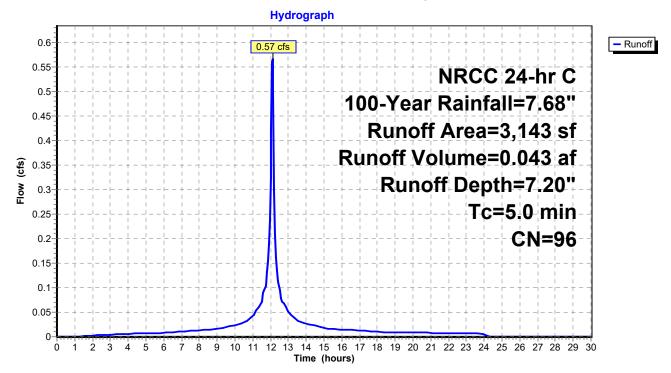
Runoff = 0.38 cfs @ 12.17 hrs, Volume= 0.041 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	Area (sf)	CN	Description		
	967	98	Paved park	ing, HSG A	
	19,985	36	Woods, Fai	r, HSG A	
	20,952 19,985 967	9		verage vious Area ervious Area	
- (mi	C Length n) (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
7	.7 340	0.2688	0.74		Lag/CN Method, Contour Length= 5,632' Interval= 1'

Subcatchment E4: west drainage area

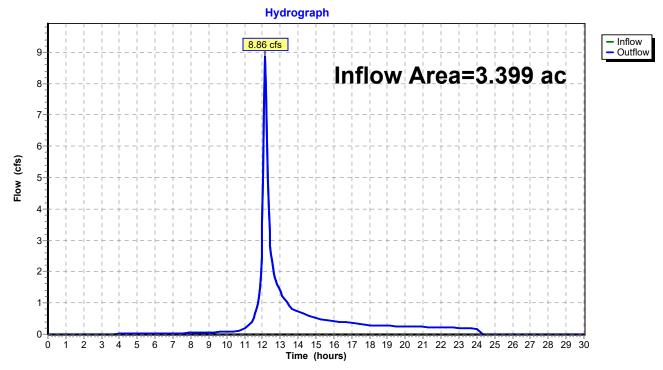
Summary for Subcatchment E4A: ex bldg roof


[49] Hint: Tc<2dt may require smaller dt

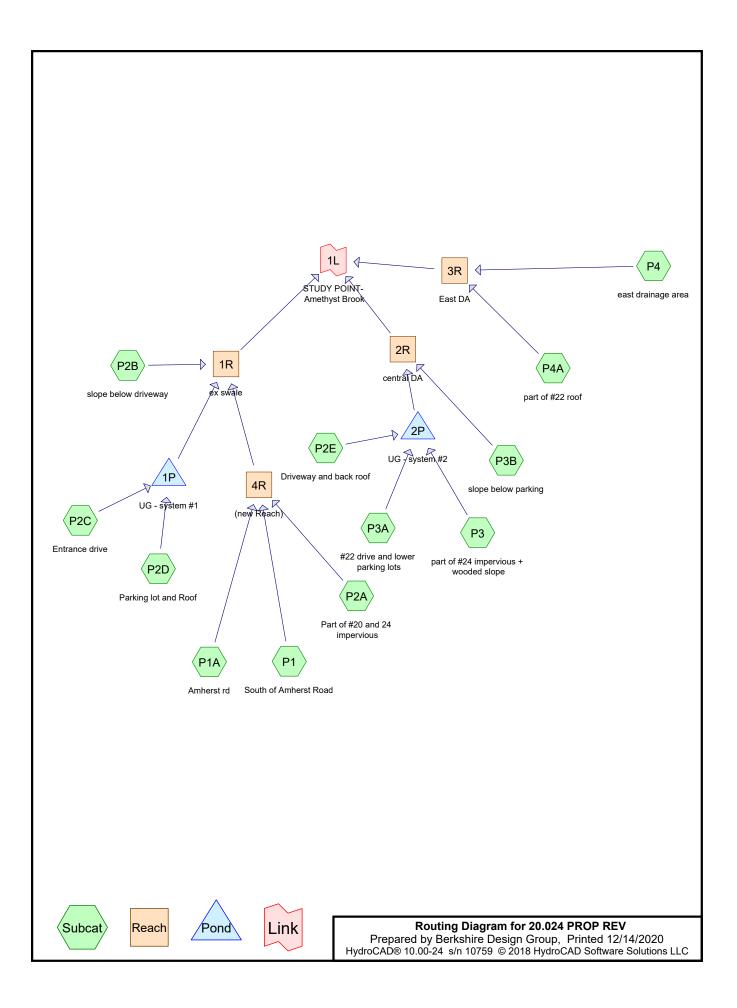
Runoff = 0.57 cfs @ 12.11 hrs, Volume= 0.043 af, Depth= 7.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

A	rea (sf)	CN	Description					
	3,000	98	Paved park	ing, HSG A	A			
	143	49	50-75% Gra	50-75% Grass cover, Fair, HSG A				
	3,143	96	Weighted Average					
	143		4.55% Pervious Area					
	3,000		95.45% Impervious Area					
_				• •	-			
Tc	Length	Slope		Capacity	I I I I I I I I I I I I I I I I I I I			
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)				
5.0					Direct Entry,			



Summary for Reach 1R: ex swale


[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.399 ac, 19.94% Impervious, Inflow Depth = 2.61" for	100-Year event
Inflow	=	8.86 cfs @ 12.16 hrs, Volume= 0.738 af	
Outflow	=	8.86 cfs @ 12.16 hrs, Volume= 0.738 af, Atten=	0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach 1R: ex swale

Project Notes

Rainfall events imported from "NRCS-Rain.txt" for 4007 MA Amherst Hampshire County

Area Listing (all nodes)

I	Area	CN	Description
(ac	cres)		(subcatchment-numbers)
0	.728	49	50-75% Grass cover, Fair, HSG A (P1, P1A, P2A, P2C, P2D, P2E, P3, P3A, P3B)
0	.045	96	Gravel surface, HSG A (P2E, P3A)
0	.939	98	Impervious (P2C, P2D, P2E, P3, P3A, P3B, P4)
0	.061	98	Impervious HSG A (P2A)
0	.018	98	Impervious - roof (P2E)
0	.161	98	Impervious HSG A (P1)
0	.019	98	Impervious HSG B (P1)
0	.248	98	Paved road, HSG A (P1A)
0	.079	98	Unconnected roofs, HSG A (P4A)
0	.008	98	Wall (P2B)
2	.459	36	Woods, Fair, HSG A (P1, P2A, P2B, P3, P3B, P4, P4A)
0	.704	60	Woods, Fair, HSG B (P1)
5	.469	59	TOTAL AREA

Soil Listing (all nodes)

	Area	Soil	Subcatchment
(acres)	Group	Numbers
	3.781	HSG A	P1, P1A, P2A, P2B, P2C, P2D, P2E, P3, P3A, P3B, P4, P4A
	0.722	HSG B	P1
	0.000	HSG C	
	0.000	HSG D	
	0.965	Other	P2B, P2C, P2D, P2E, P3, P3A, P3B, P4
	5.469		TOTAL AREA

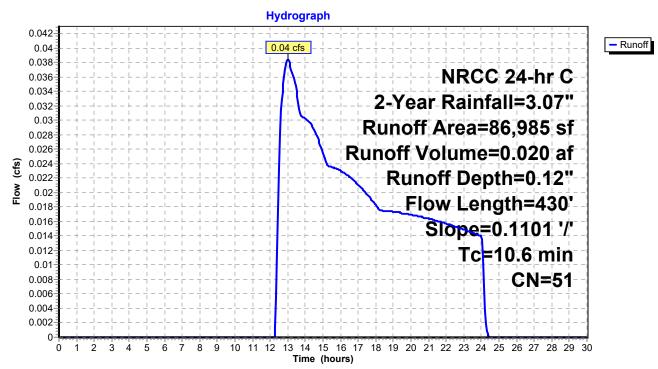
20.024 PROP REV

Prepared by Berks	hire Desig	jn Group	
HydroCAD® 10.00-24	s/n 10759	© 2018 HydroCAE	Software Solutions LL

Printed 12/14/2020 _C Page 5

					· ·	,		
	HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
	(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
-	0.728	0.000	0.000	0.000	0.000	0.728	50-75% Grass cover, Fair	P1, P1A,
								P2A,
								P2C,
								P2D,
								P2E, P3,
								P3A, P3B
	0.045	0.000	0.000	0.000	0.000	0.045	Gravel surface	P2E, P3A
	0.222	0.019	0.000	0.000	0.939	1.180	Impervious	P1, P2A,
								P2C,
								P2D,
								P2E, P3,
								P3A,
								P3B, P4
	0.000	0.000	0.000	0.000	0.018	0.018	Impervious - roof	P2E
	0.248	0.000	0.000	0.000	0.000	0.248	Paved road	P1A
	0.079	0.000	0.000	0.000	0.000	0.079	Unconnected roofs	P4A
	0.000	0.000	0.000	0.000	0.008	0.008	Wall	P2B
	2.459	0.704	0.000	0.000	0.000	3.163	Woods, Fair	P1, P2A,
								P2B, P3,
								P3B, P4,
								P4A
	3.781	0.722	0.000	0.000	0.965	5.469	TOTAL AREA	

Ground Covers (all nodes)


Summary for Subcatchment P1: South of Amherst Road

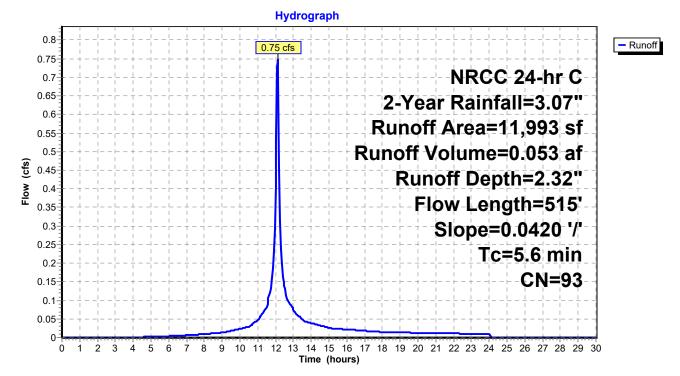
Runoff = 0.04 cfs @ 13.01 hrs, Volume= 0.020 af, Depth= 0.12"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	A	rea (sf)	CN	Description				
*		7,024	98	mpervious	HSG A			
*		806	98	Impervious HSG B				
		39,100	36	Noods, Fai	r, HSG A			
		30,655	60	Voods, Fair, HSG B				
		9,400	49	50-75% Grass cover, Fair, HSG A				
		86,985	51	Neighted A	verage			
		79,155	ę	91.00% Pei	vious Area			
		7,830	ę	9.00% Impe	ervious Are	a		
	Тс	Length	Slope		Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	10.6	430	0.1101	0.68		Lag/CN Method,		
						Contour Length= 9,580' Interval= 1'		

Subcatchment P1: South of Amherst Road

Summary for Subcatchment P1A: Amherst rd


[49] Hint: Tc<2dt may require smaller dt

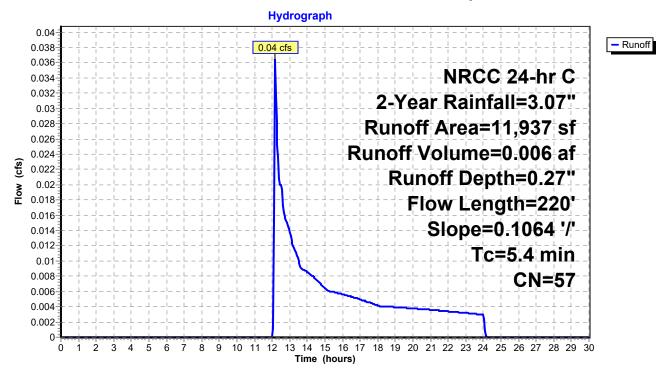
Runoff = 0.75 cfs @ 12.12 hrs, Volume= 0.053 af, Depth= 2.32"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	A	rea (sf)	CN	Description					
*		10,800	98	Paved road, HSG A					
		1,193	49	50-75% Grass cover, Fair, HSG A					
		11,993	93	Weighted Average					
		1,193		9.95% Perv	ious Area				
		10,800		90.05% Imp	pervious Ar	ea			
	_								
	Tc	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	5.6	515	0.0420	1.53		Lag/CN Method,			
						Contour Length= 504' Interval= 1'			

Subcatchment P1A: Amherst rd

Summary for Subcatchment P2A: Part of #20 and 24 impervious


[49] Hint: Tc<2dt may require smaller dt

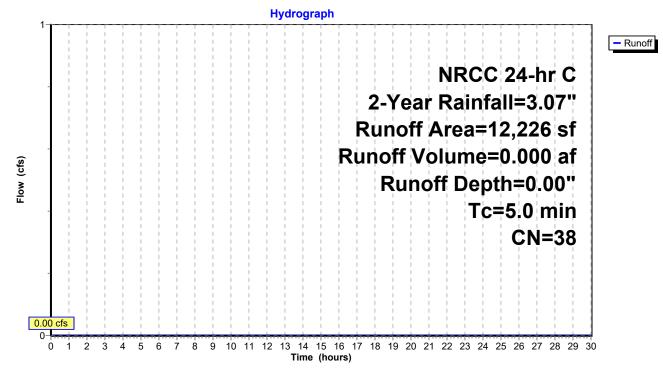
Runoff = 0.04 cfs @ 12.17 hrs, Volume= 0.006 af, Depth= 0.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	A	rea (sf)	CN	Description						
*		2,647	98	Impervious HSG A						
		7,000	49	50-75% Grass cover, Fair, HSG A						
		2,290	36	Woods, Fair, HSG A						
		11,937	57	Weighted Average						
		9,290		77.83% Pervious Area						
		2,647		22.17% Imp	pervious Ar	ea				
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description				
	5.4	220	0.1064	· · ·	()	Lag/CN Method, Contour Length= 1,270' Interval= 1'				

Subcatchment P2A: Part of #20 and 24 impervious

Summary for Subcatchment P2B: slope below driveway


[49] Hint: Tc<2dt may require smaller dt [45] Hint: Runoff=Zero

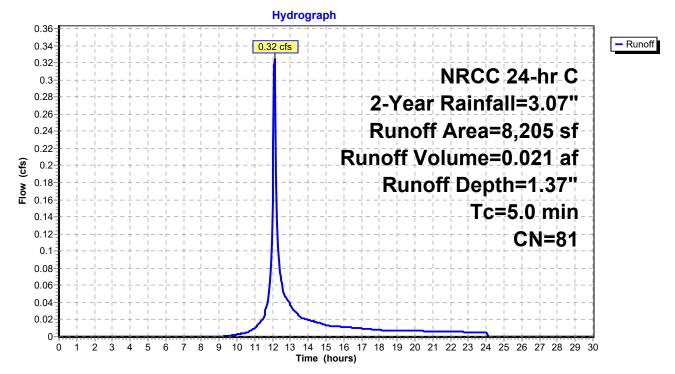
Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	A	rea (sf)	CN	Description						
		11,888	36	Woods, Fai	Woods, Fair, HSG A					
*		338	98	Wall						
		12,226 11,888 338	38	Weighted A 97.24% Per 2.76% Impe	vious Area					
	Tc (min)	Length (feet)	Slop (ft/f	,	Capacity (cfs)	Description				
	5.0					Direct Entry,				

Subcatchment P2B: slope below driveway

Summary for Subcatchment P2C: Entrance drive


[49] Hint: Tc<2dt may require smaller dt

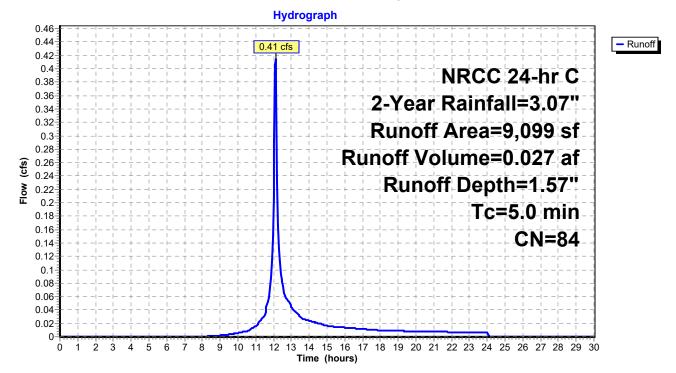
Runoff = 0.32 cfs @ 12.12 hrs, Volume= 0.021 af, Depth= 1.37"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

_	A	rea (sf)	CN	Description						
*		5,389	98	mpervious						
_		2,816	49	50-75% Grass cover, Fair, HSG A						
		8,205	81	Weighted A	Veighted Average					
		2,816		34.32% Pervious Area						
		5,389		65.68% Impervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	1				
	5.0					Direct Entry,				

Subcatchment P2C: Entrance drive

Summary for Subcatchment P2D: Parking lot and Roof


[49] Hint: Tc<2dt may require smaller dt

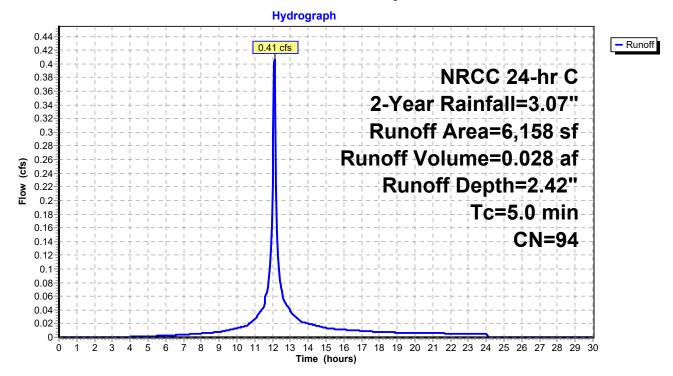
Runoff = 0.41 cfs @ 12.12 hrs, Volume= 0.027 af, Depth= 1.57"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

_	A	rea (sf)	CN	Description						
*		6,504	98	Impervious						
_		2,595	49	50-75% Grass cover, Fair, HSG A						
		9,099	84	Weighted A	Veighted Average					
		2,595		28.52% Pervious Area						
		6,504		71.48% lmp	pervious Ar	rea				
_	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	1				
	5.0					Direct Entry,				

Subcatchment P2D: Parking lot and Roof

Summary for Subcatchment P2E: Driveway and back roof

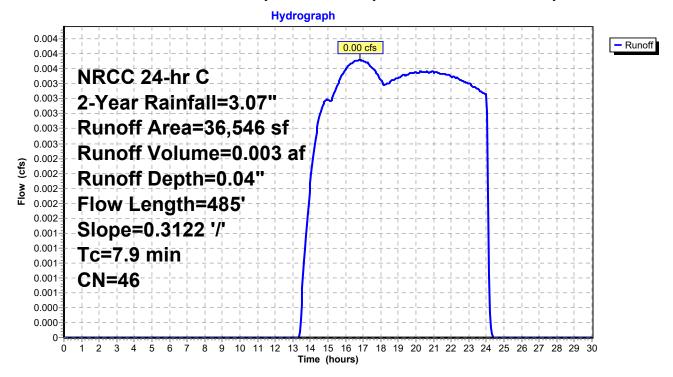

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.41 cfs @ 12.11 hrs, Volume= 0.028 af, Depth= 2.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	A	rea (sf)	CN	Description						
*		4,254	98	Impervious						
		653	96	Gravel surfa	ace, HSG A	A				
		451	49	50-75% Grass cover, Fair, HSG A						
*		800	98	mpervious - roof						
		6,158	94	Weighted Average						
		1,104		17.93% Pervious Area						
		5,054		82.07% Impervious Area						
	Тс	Length	Slope		Capacity	I				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.0					Direct Entry,				

Subcatchment P2E: Driveway and back roof

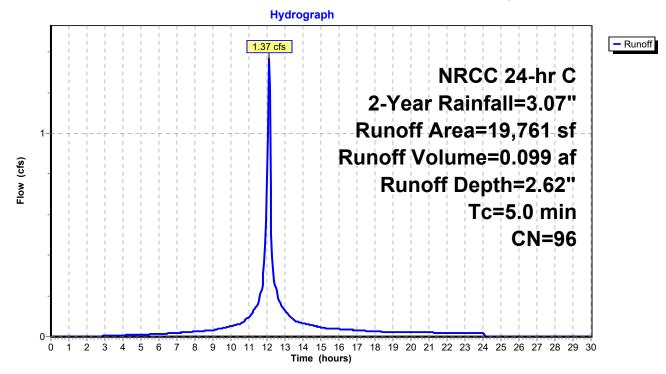

Summary for Subcatchment P3: part of #24 impervious + wooded slope

0.00 cfs @ 16.84 hrs, Volume= 0.003 af, Depth= 0.04" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

_	A	rea (sf)	CN [Description					
*		4,706	98 I	Impervious					
		26,390	36 \	Voods, Fai	r, HSG A				
		5,000	49 5	50-75% Grass cover, Fair, HSG A					
		450	49 5	50-75% Grass cover, Fair, HSG A					
		36,546	46 \	Veighted A	verage				
		31,840	8	37.12% Pei	vious Area				
		4,706		12.88% Imp	pervious Ar	ea			
	Тс	Length	Slope		Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.9	485	0.3122	1.03		Lag/CN Method, Contour Length= 11,408' Interval= 1'			

Summary for Subcatchment P3A: #22 drive and lower parking lots


[49] Hint: Tc<2dt may require smaller dt

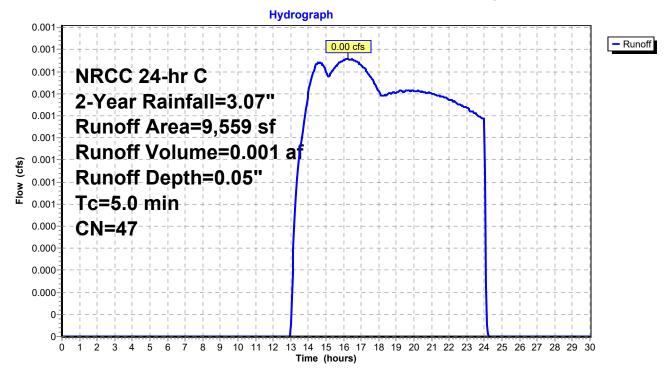
Runoff = 1.37 cfs @ 12.11 hrs, Volume= 0.099 af, Depth= 2.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	Area (sf)	CN	Description				
*	17,647	98	Impervious				
	1,300	96	Gravel surfa	ace, HSG A	A		
	814	49	50-75% Gra	ass cover, l	Fair, HSG A		
	19,761	96	Weighted Average				
	2,114		10.70% Pervious Area				
	17,647		89.30% Impervious Area				
_							
То	5	Slope	,	Capacity	Description		
(min) (feet)	(ft/ft) (ft/sec)	(cfs)			
5.0)				Direct Entry,		

Subcatchment P3A: #22 drive and lower parking lots

Summary for Subcatchment P3B: slope below parking


[49] Hint: Tc<2dt may require smaller dt

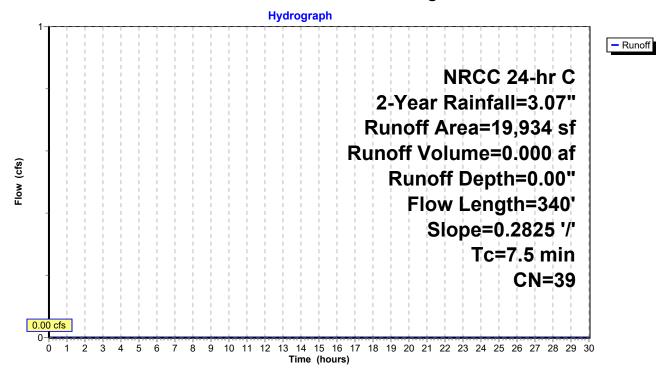
Runoff = 0.00 cfs @ 16.24 hrs, Volume= 0.001 af, Depth= 0.05"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	Area (sf)	CN	Description				
*	1,285	98	Impervious				
	6,274	36	Woods, Fai	r, HSG A			
	2,000	49	50-75% Gra	50-75% Grass cover, Fair, HSG A			
	9,559 8,274 1,285	47	Weighted A 86.56% Pe 13.44% Imp	rvious Area			
T (mir	c Length n) (feet)	Slop (ft/f		Capacity (cfs)			
5.	0				Direct Entry,		

Subcatchment P3B: slope below parking

Summary for Subcatchment P4: east drainage area


[45] Hint: Runoff=Zero

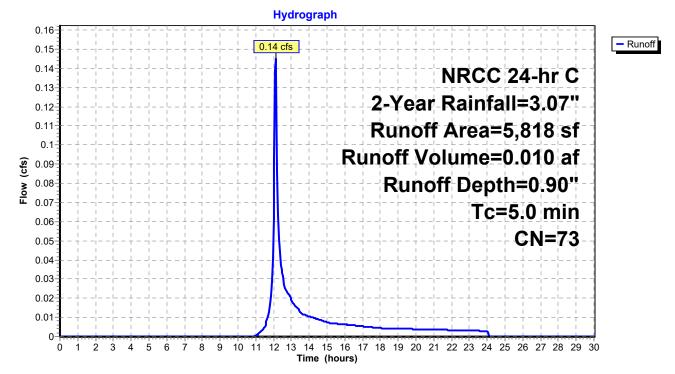
Runoff = 0.00 cfs @ 0.00 hrs, Volume= 0.000 af, Depth= 0.00"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

	A	rea (sf)	CN	Description		
		18,814	36	Woods, Fai	r, HSG A	
*		1,120	98	Impervious		
		19,934	39	Weighted A	verage	
		18,814		94.38% Pei	vious Area	
		1,120		5.62% Impe	ervious Area	a
	Тс	Length	Slope		Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.5	340	0.2825	0.75		Lag/CN Method,
						Contour Length= 5,632' Interval= 1'

Subcatchment P4: east drainage area

Summary for Subcatchment P4A: part of #22 roof

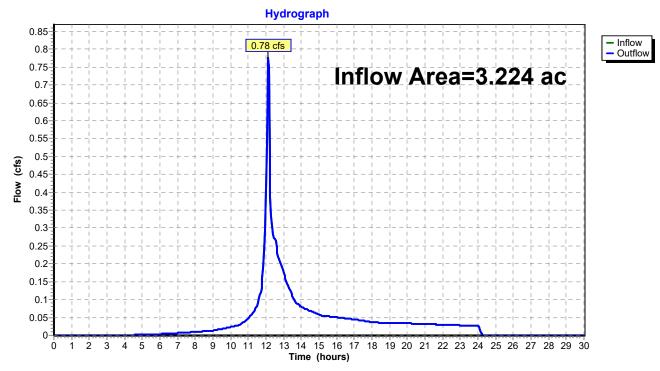

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.14 cfs @ 12.12 hrs, Volume= 0.010 af, Depth= 0.90"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-Year Rainfall=3.07"

Α	rea (sf)	CN	Description			
	3,455	98	Unconnecte	ed roofs, HS	SG A	
	2,363	36	Woods, Fai	r, HSG A		
	5,818	73	Weighted A	verage		
	2,363		40.62% Per	vious Area	3	
	3,455		59.38% Impervious Area			
	3,455		100.00% Unconnected			
-		01		0		
TC	Length	Slope		Capacity	Description	
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment P4A: part of #22 roof

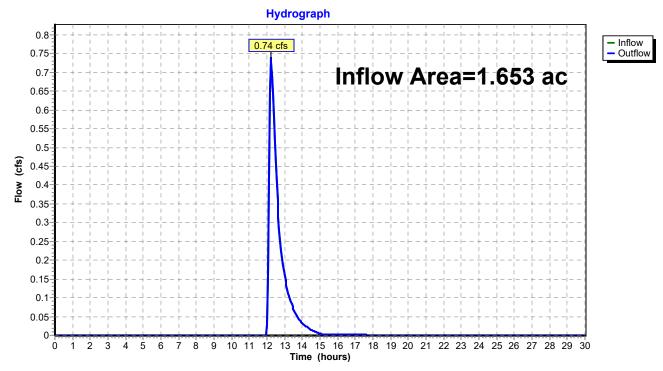


Summary for Reach 1R: ex swale

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	3.224 ac, 23.86% Impervious, Infl	ow Depth = 0.32" for 2-Year event
Inflow =	0.78 cfs @ 12.13 hrs, Volume=	0.086 af
Outflow =	0.78 cfs @ 12.13 hrs, Volume=	0.086 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

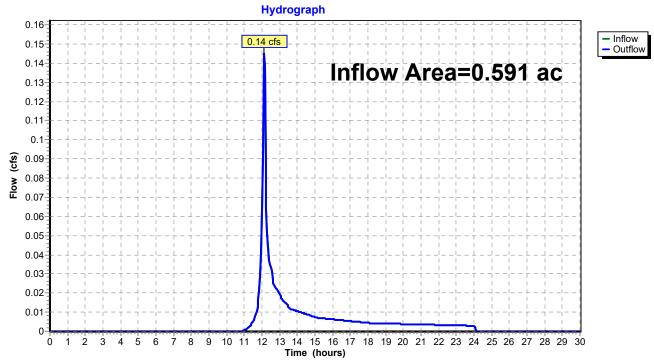

Reach 1R: ex swale

Summary for Reach 2R: central DA

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	1.653 ac, 39.84% Impervious, Inflow Depth = 0.30" for 2-Year	event
Inflow	=	0.74 cfs @ 12.22 hrs, Volume= 0.042 af	
Outflow	=	0.74 cfs @ 12.22 hrs, Volume= 0.042 af, Atten= 0%, Lag	= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

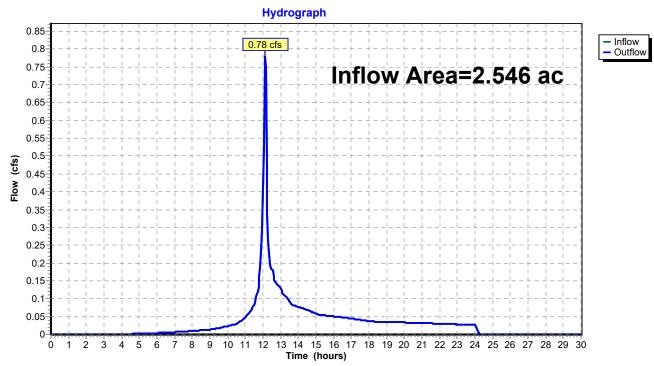

Reach 2R: central DA

Summary for Reach 3R: East DA

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.591 ac, 17.77% Impervious, Inflow Depth = 0.20" for 2-Year event	
Inflow	=	0.14 cfs @ 12.12 hrs, Volume= 0.010 af	
Outflow	=	0.14 cfs @ 12.12 hrs, Volume= 0.010 af, Atten= 0%, Lag= 0.0 n	nin

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach 3R: East DA

Summary for Reach 4R: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	=	2.546 ac, 1	9.18% Imp	ervious,	Inflow De	epth = (0.38"	for 2-Y	'ear event
Inflow =	=	0.78 cfs @	12.13 hrs,	Volume	=	0.080 a	ıf		
Outflow =	=	0.78 cfs @	12.13 hrs,	Volume	=	0.080 a	lf, Atte	n= 0%,	Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach 4R: (new Reach)

Summary for Pond 1P: UG - system #1

Inflow Area =	0.397 ac, 68.73% Impervious, Inflow De	epth = 1.48" for 2-Year event
Inflow =	0.74 cfs @ 12.12 hrs, Volume=	0.049 af
Outflow =	0.15 cfs @ 12.47 hrs, Volume=	0.049 af, Atten= 79%, Lag= 21.4 min
Discarded =	0.06 cfs @ 11.60 hrs, Volume=	0.043 af
Primary =	0.09 cfs @ 12.47 hrs, Volume=	0.006 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 305.39' @ 12.47 hrs Surf.Area= 0.027 ac Storage= 0.014 af

Plug-Flow detention time= 53.9 min calculated for 0.049 af (100% of inflow) Center-of-Mass det. time= 53.9 min (899.4 - 845.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	304.50'	0.014 af	42.06'W x 27.46'L x 2.44'H Field A
			0.065 af Overall - 0.030 af Embedded = 0.035 af x 40.0% Voids
#2A	305.00'	0.028 af	ACF R-Tank HD 1 x 290 Inside #1
			Inside= 15.7"W x 17.3"H => 1.80 sf x 2.35'L = 4.2 cf
			Outside= 15.7"W x 17.3"H => 1.89 sf x 2.35'L = 4.4 cf
			290 Chambers in 29 Rows
		0 0/12 af	Total Available Storage

0.042 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	305.20'	5.0" Vert. Orifice/Grate C= 0.600	
#2	Primary	306.40'	8.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#3	Discarded	304.50'	2.410 in/hr Exfiltration over Surface area	Phase-In= 0.01'

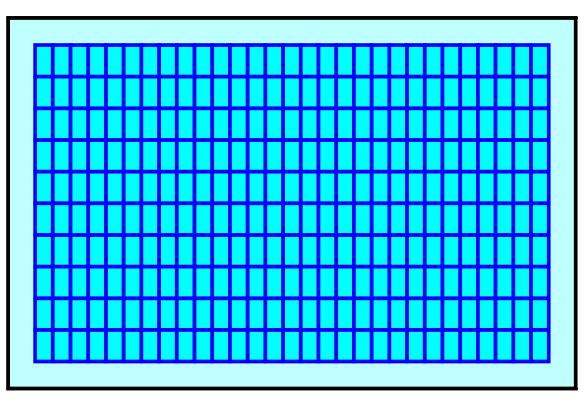
Discarded OutFlow Max=0.06 cfs @ 11.60 hrs HW=304.52' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.09 cfs @ 12.47 hrs HW=305.39' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.09 cfs @ 1.47 fps) 2=Orifice/Grate (Controls 0.00 cfs)

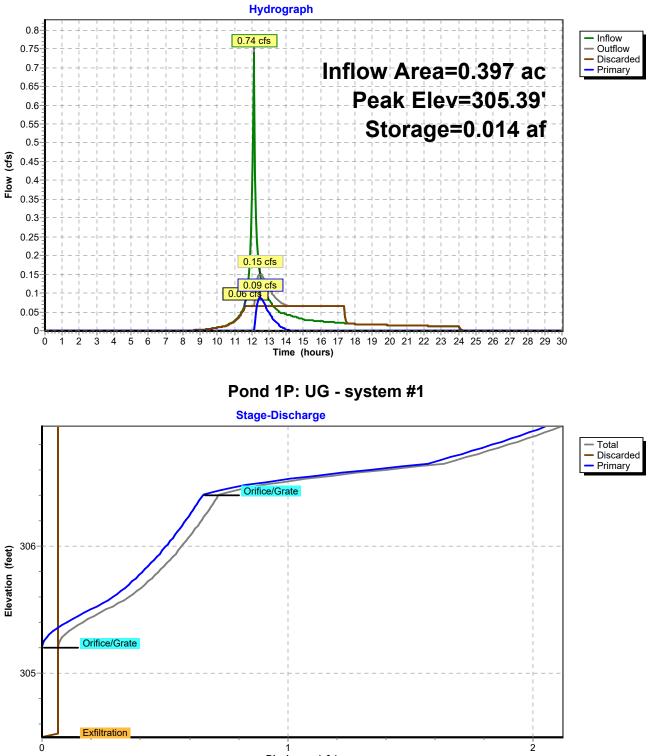
Pond 1P: UG - system #1 - Chamber Wizard Field A

Chamber Model = ACF R-Tank HD 1 (ACF Environmental R-Tank HD)

Inside= 15.7"W x 17.3"H => 1.80 sf x 2.35'L = 4.2 cf Outside= 15.7"W x 17.3"H => 1.89 sf x 2.35'L = 4.4 cf


10 Chambers/Row x 2.35' Long = 23.46' Row Length +24.0" End Stone x 2 = 27.46' Base Length 29 Rows x 15.7" Wide + 24.0" Side Stone x 2 = 42.06' Base Width 6.0" Base + 17.3" Chamber Height + 6.0" Cover = 2.44' Field Height

290 Chambers x 4.2 cf = 1,224.3 cf Chamber Storage 290 Chambers x 4.4 cf = 1,288.8 cf Displacement


2,821.9 cf Field - 1,288.8 cf Chambers = 1,533.1 cf Stone x 40.0% Voids = 613.3 cf Stone Storage

Chamber Storage + Stone Storage = 1,837.6 cf = 0.042 af Overall Storage Efficiency = 65.1% Overall System Size = 27.46' x 42.06' x 2.44'

290 Chambers 104.5 cy Field 56.8 cy Stone

Pond 1P: UG - system #1

Discharge (cfs)

Summary for Pond 2P: UG - system #2

Inflow Area =	1.434 ac, 43.88% Impervious, Inflow De	epth = 1.09" for 2-Year event
Inflow =	1.77 cfs @ 12.11 hrs, Volume=	0.130 af
Outflow =	0.82 cfs @ 12.22 hrs, Volume=	0.130 af, Atten= 54%, Lag= 6.7 min
Discarded =	0.08 cfs @ 10.65 hrs, Volume=	0.089 af
Primary =	0.74 cfs @ 12.22 hrs, Volume=	0.041 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 294.22' @ 12.22 hrs Surf.Area= 0.034 ac Storage= 0.033 af

Plug-Flow detention time= 53.3 min calculated for 0.130 af (100% of inflow) Center-of-Mass det. time= 53.2 min (842.8 - 789.6)

Volume	Invert	Avail.Storage	Storage Description
#1A	292.80'	0.020 af	43.37'W x 34.50'L x 3.17'H Field A
			0.109 af Overall - 0.060 af Embedded = 0.049 af x 40.0% Voids
#2A	293.30'	0.057 af	ACF R-Tank HD 1.5 x 390 Inside #1
			Inside= 15.7"W x 26.0"H => 2.70 sf x 2.35'L = 6.3 cf
			Outside= 15.7"W x 26.0"H => 2.84 sf x 2.35'L = 6.7 cf
			390 Chambers in 30 Rows
		0 076 af	Total Available Storage

0.076 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	293.60'	7.0" Vert. Orifice/Grate C= 0.600	
#2	Primary	294.50'	8.0" Vert. Orifice/Grate C= 0.600	
#3	Primary	295.80'	12.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#4	Discarded	292.80'	2.410 in/hr Exfiltration over Surface area	Phase-In= 0.01'

Discarded OutFlow Max=0.08 cfs @ 10.65 hrs HW=292.83' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=0.73 cfs @ 12.22 hrs HW=294.21' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 0.73 cfs @ 2.73 fps)

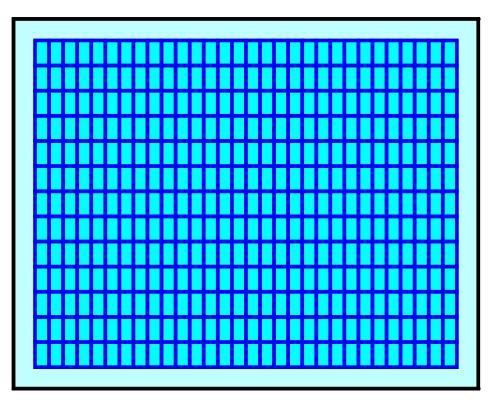
-2=Orifice/Grate (Controls 0.00 cfs)

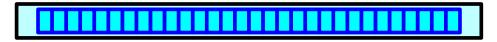
-3=Orifice/Grate (Controls 0.00 cfs)

Pond 2P: UG - system #2 - Chamber Wizard Field A

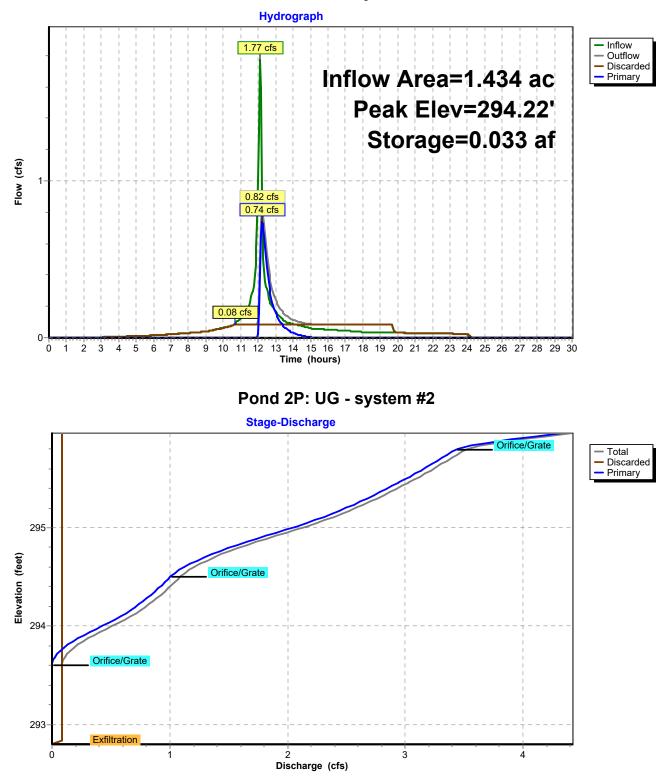
Chamber Model = ACF R-Tank HD 1.5 (ACF Environmental R-Tank HD)

Inside= 15.7"W x 26.0"H => 2.70 sf x 2.35'L = 6.3 cf Outside= 15.7"W x 26.0"H => 2.84 sf x 2.35'L = 6.7 cf

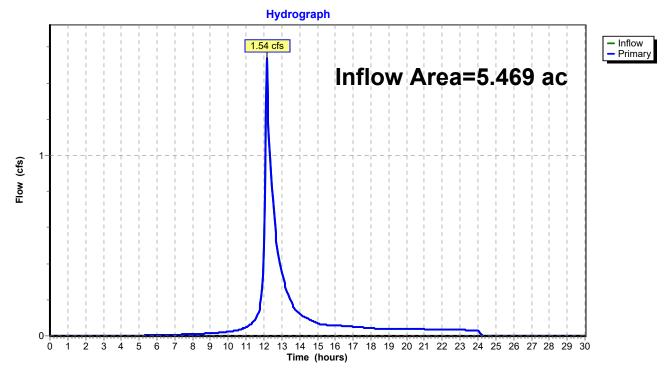

13 Chambers/Row x 2.35' Long = 30.50' Row Length +24.0" End Stone x 2 = 34.50' Base Length 30 Rows x 15.7" Wide + 24.0" Side Stone x 2 = 43.37' Base Width 6.0" Base + 26.0" Chamber Height + 6.0" Cover = 3.17' Field Height


390 Chambers x 6.3 cf = 2,469.8 cf Chamber Storage 390 Chambers x 6.7 cf = 2,599.7 cf Displacement

4,735.6 cf Field - 2,599.7 cf Chambers = 2,135.8 cf Stone x 40.0% Voids = 854.3 cf Stone Storage


Chamber Storage + Stone Storage = 3,324.1 cf = 0.076 afOverall Storage Efficiency = 70.2%Overall System Size = $34.50' \times 43.37' \times 3.17'$

390 Chambers 175.4 cy Field 79.1 cy Stone

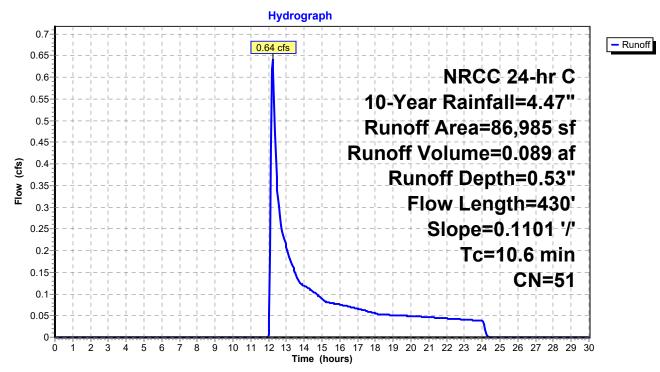

Pond 2P: UG - system #2

Summary for Link 1L: STUDY POINT- Amethyst Brook

Inflow Area	a =	5.469 ac, 28.03% Impervious, Inflow Depth = 0.30" for 2-Year event	
Inflow	=	1.54 cfs @ 12.15 hrs, Volume= 0.138 af	
Primary	=	1.54 cfs @ 12.15 hrs, Volume= 0.138 af, Atten= 0%, Lag= 0.0 r	min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link 1L: STUDY POINT- Amethyst Brook


Summary for Subcatchment P1: South of Amherst Road

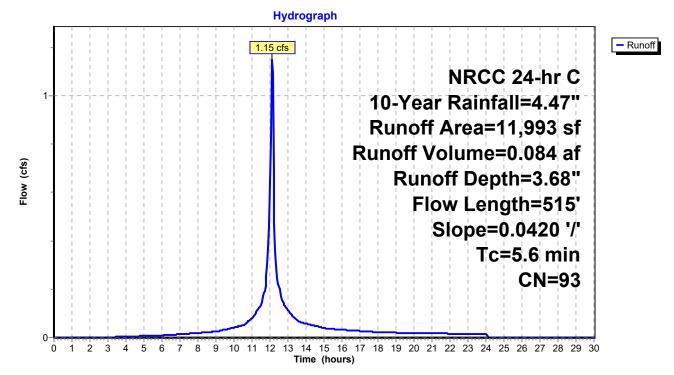
Runoff = 0.64 cfs @ 12.22 hrs, Volume= 0.089 af, Depth= 0.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

	A	rea (sf)	CN	Description					
*		7,024	98	mpervious	HSG A				
*		806	98	mpervious	HSG B				
		39,100	36	Noods, Fai	r, HSG A				
		30,655	60	Noods, Fai	r, HSG B				
_		9,400	49	50-75% Gra	ass cover, l	Fair, HSG A			
		86,985	51	Neighted A	verage				
		79,155	9	91.00% Per	vious Area				
		7,830	9	9.00% Impe	ervious Are	a			
	Тс	Length	Slope		Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.6	430	0.1101	0.68		Lag/CN Method,			
						Contour Length= 9,580' Interval= 1'			

Subcatchment P1: South of Amherst Road

Summary for Subcatchment P1A: Amherst rd


[49] Hint: Tc<2dt may require smaller dt

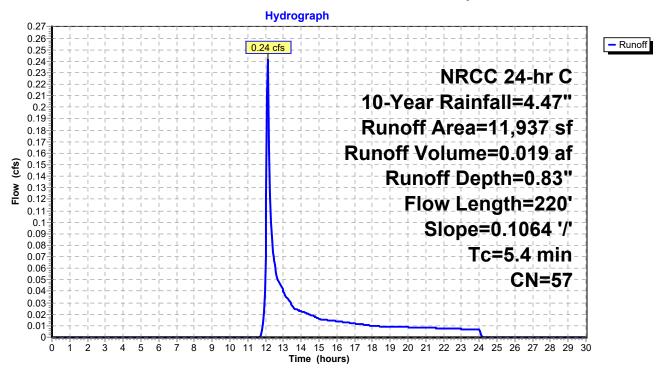
Runoff = 1.15 cfs @ 12.12 hrs, Volume= 0.084 af, Depth= 3.68"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

_	A	rea (sf)	CN	Description					
*		10,800	98	Paved road	, HSG A				
_		1,193	49	50-75% Gra	ass cover, F	Fair, HSG A			
		11,993	93	Weighted A	Weighted Average				
		1,193		9.95% Perv	ious Area				
		10,800		90.05% Imp	pervious Ar	ea			
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.6	515	0.0420) 1.53		Lag/CN Method,			
						Contour Length= 504' Interval= 1'			

Subcatchment P1A: Amherst rd

Summary for Subcatchment P2A: Part of #20 and 24 impervious

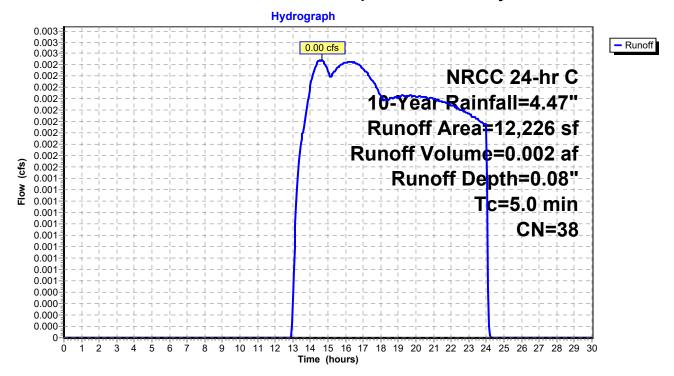

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.24 cfs @ 12.14 hrs, Volume= 0.019 af, Depth= 0.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

	Area	a (sf)	CN	Description					
*	2	,647	98	Impervious	HSG A				
	7	,000	49	50-75% Gra	ass cover, l	Fair, HSG A			
	2	,290	36	Woods, Fai	r, HSG A				
	11	,937	57	Weighted A	Veighted Average				
	9	,290		77.83% Pervious Area					
	2	,647		22.17% lmp	pervious Ar	ea			
	Tc L	ength	Slope	e Velocity	Capacity	Description			
(m	in)	(feet)	(ft/ft) (ft/sec)	(cfs)				
į	5.4	220	0.1064	0.68		Lag/CN Method,			
						Contour Length= 1,270' Interval= 1'			

Subcatchment P2A: Part of #20 and 24 impervious


[49] Hint: Tc<2dt may require smaller dt

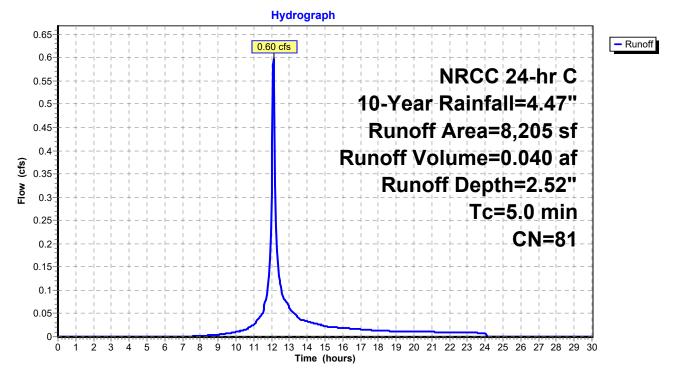
Runoff 0.00 cfs @ 14.64 hrs, Volume= 0.002 af, Depth= 0.08" =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

	A	rea (sf)	CN	Description					
		11,888	36	Woods, Fai	r, HSG A				
*		338	98	Wall					
		12,226	38	Weighted A	Weighted Average				
		11,888		97.24% Pervious Area					
		338		2.76% Impe	ervious Area	а			
	Тс	Length	Slop	e Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.0					Direct Entry,			

Subcatchment P2B: slope below driveway

Summary for Subcatchment P2C: Entrance drive

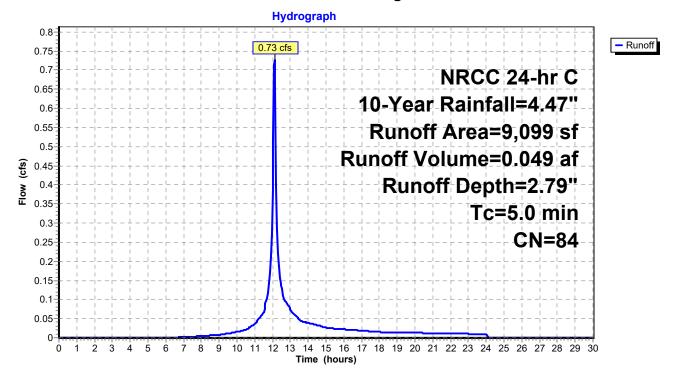

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.60 cfs @ 12.12 hrs, Volume= 0.040 af, Depth= 2.52"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

_	A	rea (sf)	CN	Description						
*		5,389	98	Impervious						
		2,816	49	50-75% Gra	ass cover, l	Fair, HSG A				
		8,205	81	Weighted A	/eighted Average					
		2,816		34.32% Per	rvious Area	a				
		5,389		65.68% Imp	pervious Ar	rea				
_	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)					
	5.0					Direct Entry,				

Subcatchment P2C: Entrance drive


[49] Hint: Tc<2dt may require smaller dt

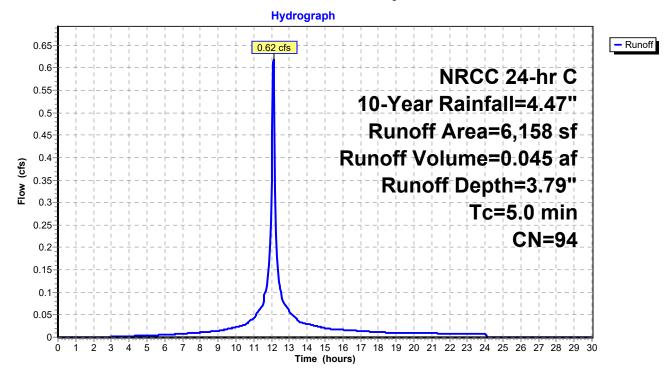
0.73 cfs @ 12.11 hrs, Volume= 0.049 af, Depth= 2.79" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

_	A	rea (sf)	CN	Description							
*		6,504	98	Impervious							
_		2,595	49	50-75% Gra	50-75% Grass cover, Fair, HSG A						
		9,099	84	Weighted A	/eighted Average						
		2,595		28.52% Pe	28.52% Pervious Area						
		6,504		71.48% Imp	pervious Ar	rea					
	Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)						
	5.0					Direct Entry,					

Subcatchment P2D: Parking lot and Roof

Summary for Subcatchment P2E: Driveway and back roof


[49] Hint: Tc<2dt may require smaller dt

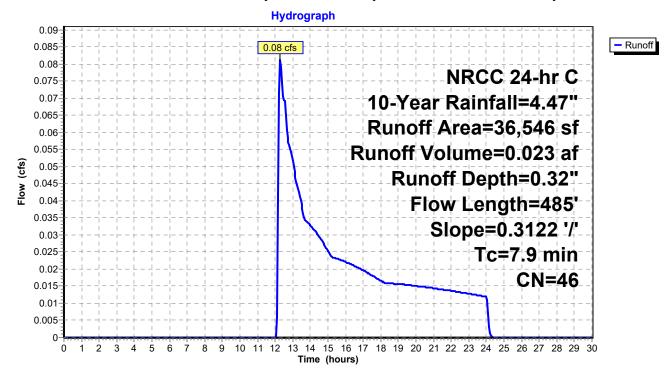
Runoff = 0.62 cfs @ 12.11 hrs, Volume= 0.045 af, Depth= 3.79"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

	Α	rea (sf)	CN	Description					
*		4,254	98	Impervious					
		653	96	Gravel surfa	ace, HSG A	A			
		451	49	50-75% Gra	ass cover, F	Fair, HSG A			
*		800	98	Impervious	- roof				
		6,158	94	Weighted A	Weighted Average				
		1,104		17.93% Pe	rvious Area	a			
		5,054		82.07% Imp	pervious Ar	rea			
	Тс	Length	Slope		Capacity	1			
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.0					Direct Entry,			

Subcatchment P2E: Driveway and back roof

Summary for Subcatchment P3: part of #24 impervious + wooded slope


Runoff = 0.08 cfs @ 12.29 hrs, Volume= 0.023 af, Depth= 0.32"

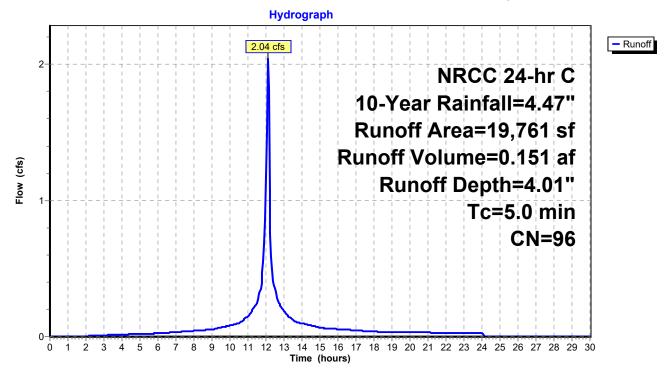
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

	A	rea (sf)	CN I	Description					
*		4,706	98 I	mpervious					
		26,390	36 \	Noods, Fai	r, HSG A				
		5,000	49 క	50-75% Gra	ass cover, l	Fair, HSG A			
		450	49 క	50-75% Gra	ass cover, l	Fair, HSG A			
		36,546	46 \	Weighted Average					
		31,840	8	37.12% Pei	rvious Area	L			
		4,706		12.88% Imp	pervious Ar	ea			
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	7.9	485	0.3122	1.03		Lag/CN Method,			
						Contour Longth = 11 409' Intonvol = 1'			

Contour Length= 11,408' Interval= 1

Subcatchment P3: part of #24 impervious + wooded slope

Summary for Subcatchment P3A: #22 drive and lower parking lots

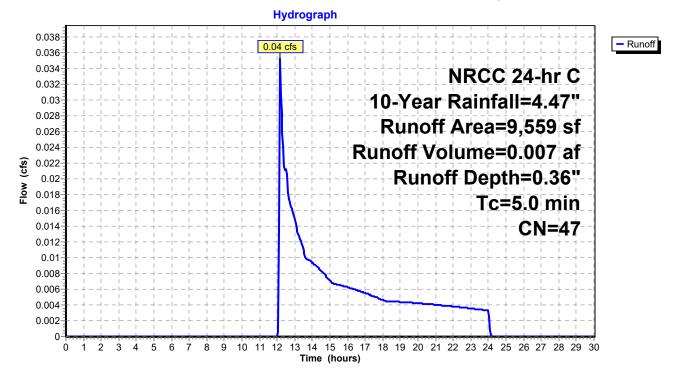

[49] Hint: Tc<2dt may require smaller dt

Runoff = 2.04 cfs @ 12.11 hrs, Volume= 0.151 af, Depth= 4.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

	Area (sf)	CN	Description				
*	17,647	98	Impervious				
	1,300	96	Gravel surfa	ace, HSG A	Α.		
	814	49	50-75% Gra	ass cover, l	Fair, HSG A		
	19,761	96	Weighted A	verage			
	2,114		10.70% Pe	vious Area	3		
	17,647		89.30% lmp	pervious Ar	rea		
т	o Longth	Slope	Volocity	Capacity	Description		
	c Length	Slope	,	Capacity	Description		
(mir	/ /	(ft/ft) (ft/sec)	(cfs)			
5.	0				Direct Entry,		

Summary for Subcatchment P3B: slope below parking

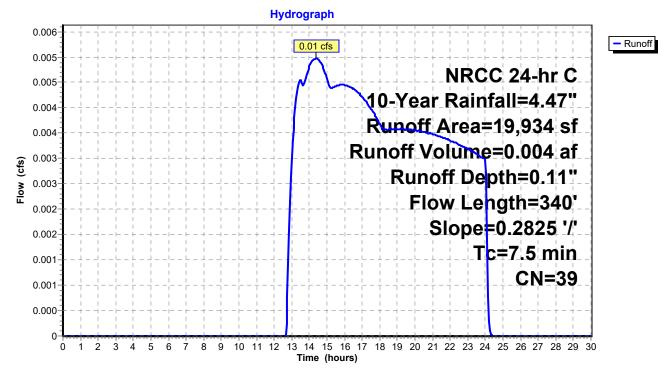

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.04 cfs @ 12.17 hrs, Volume= 0.007 af, Depth= 0.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

A	Area (sf)	CN	Description				
*	1,285	98	Impervious				
	6,274	36	Woods, Fai	r, HSG A			
	2,000	49	50-75% Gra	50-75% Grass cover, Fair, HSG A			
	9,559 8,274 1,285	47	Weighted A 86.56% Pei 13.44% Imp	rvious Area			
Tc (min)	Length (feet)	Slope (ft/ft		Capacity (cfs)	•		
5.0					Direct Entry,		

Subcatchment P3B: slope below parking


Summary for Subcatchment P4: east drainage area

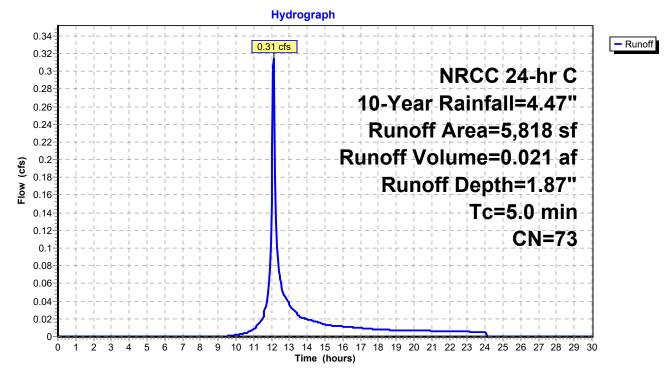
Runoff = 0.01 cfs @ 14.36 hrs, Volume= 0.004 af, Depth= 0.11"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

_	A	rea (sf)	CN	Description		
		18,814	36	Woods, Fai	r, HSG A	
*		1,120	98	Impervious		
		19,934 18,814 1,120	1	Weighted A 94.38% Per 5.62% Impe	vious Area	
_	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description
	7.5	340	0.2825	0.75		Lag/CN Method, Contour Length= 5,632' Interval= 1'

Subcatchment P4: east drainage area

Summary for Subcatchment P4A: part of #22 roof

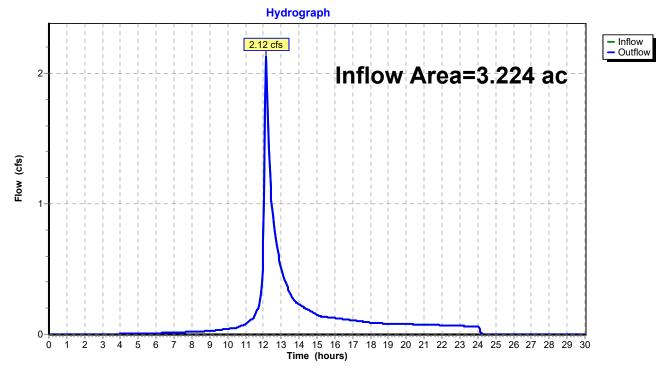

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.31 cfs @ 12.12 hrs, Volume= 0.021 af, Depth= 1.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-Year Rainfall=4.47"

A	rea (sf)	CN	Description			
	3,455	98	Unconnecte	ed roofs, HS	SG A	
	2,363	36	Woods, Fai	r, HSG A		
	5,818	73	Weighted Average			
	2,363		40.62% Pervious Area			
	3,455		59.38% Impervious Area			
	3,455		100.00% U	nconnected	d	
Та	l a sa aith	Class	Volocity	Conseitu	Description	
TC	Length	Slope		Capacity	Description	
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)		
5.0					Direct Entry,	

Subcatchment P4A: part of #22 roof

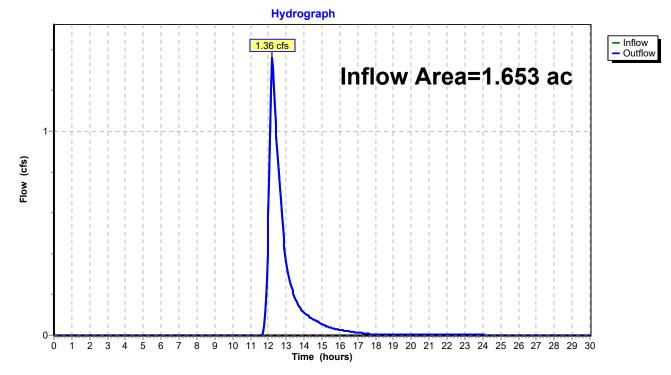


Summary for Reach 1R: ex swale

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.224 ac, 23.86% Impervious, Inflow Depth = 0.84" for	or 10-Year event
Inflow	=	2.12 cfs @ 12.16 hrs, Volume= 0.224 af	
Outflow	=	2.12 cfs @ 12.16 hrs, Volume= 0.224 af, Atten=	= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

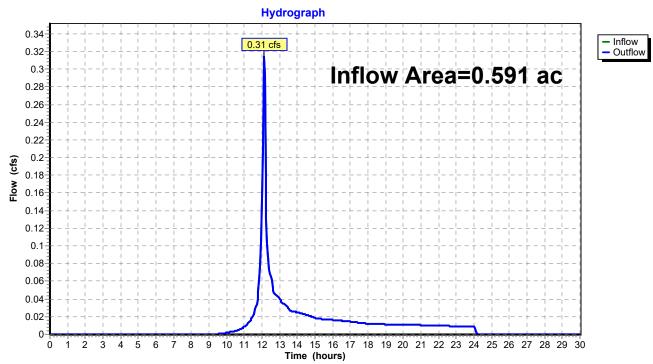

Reach 1R: ex swale

Summary for Reach 2R: central DA

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	ı =	1.653 ac, 39.84% Impervious, Inflow	Depth = 0.76" f	or 10-Year event
Inflow	=	1.36 cfs @ 12.22 hrs, Volume=	0.105 af	
Outflow	=	1.36 cfs @ 12.22 hrs, Volume=	0.105 af, Atten	= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach 2R: central DA

Summary for Reach 3R: East DA

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	0.591 ac, 17.77% Impervious, Inflow Depth = 0.51" for 10-Year	r event
Inflow	=	0.31 cfs @ 12.12 hrs, Volume= 0.025 af	
Outflow	=	0.31 cfs @ 12.12 hrs, Volume= 0.025 af, Atten= 0%, Lag	= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach 3R: East DA

Summary for Reach 4R: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.546 ac, 19.18% Impervious, Inflow De	epth = 0.91" for 10-Year event
Inflow =	1.78 cfs @ 12.15 hrs, Volume=	0.192 af
Outflow =	1.78 cfs @ 12.15 hrs, Volume=	0.192 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach 4R: (new Reach)

Summary for Pond 1P: UG - system #1

Inflow Area =	0.397 ac, 68.73% Impervious, Inflow De	epth = 2.66" for 10-Year event
Inflow =	1.32 cfs @ 12.12 hrs, Volume=	0.088 af
Outflow =	0.48 cfs @ 12.27 hrs, Volume=	0.088 af, Atten= 64%, Lag= 9.3 min
Discarded =	0.06 cfs @ 11.10 hrs, Volume=	0.058 af
Primary =	0.42 cfs @ 12.27 hrs, Volume=	0.030 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 305.81' @ 12.27 hrs Surf.Area= 0.027 ac Storage= 0.023 af

Plug-Flow detention time= 48.3 min calculated for 0.088 af (100% of inflow) Center-of-Mass det. time= 48.1 min (875.0 - 826.9)

Volume	Invert	Avail.Storage	Storage Description
#1A	304.50'	0.014 af	42.06'W x 27.46'L x 2.44'H Field A
			0.065 af Overall - 0.030 af Embedded = 0.035 af x 40.0% Voids
#2A	305.00'	0.028 af	ACF R-Tank HD 1 x 290 Inside #1
			Inside= 15.7"W x 17.3"H => 1.80 sf x 2.35'L = 4.2 cf
			Outside= 15.7"W x 17.3"H => 1.89 sf x 2.35'L = 4.4 cf
			290 Chambers in 29 Rows
		0.042 af	Total Available Storage

0.042 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	305.20'	5.0" Vert. Orifice/Grate C= 0.600	
#2	Primary	306.40'	8.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#3	Discarded	304.50'	2.410 in/hr Exfiltration over Surface area	Phase-In= 0.01'

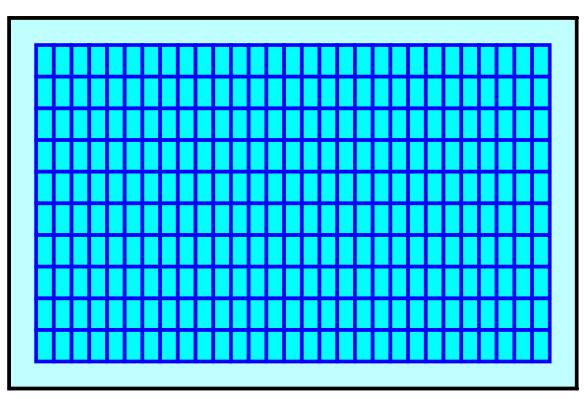
Discarded OutFlow Max=0.06 cfs @ 11.10 hrs HW=304.53' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.06 cfs)

Primary OutFlow Max=0.42 cfs @ 12.27 hrs HW=305.81' (Free Discharge) 1=Orifice/Grate (Orifice Controls 0.42 cfs @ 3.05 fps) 2=Orifice/Grate (Controls 0.00 cfs)

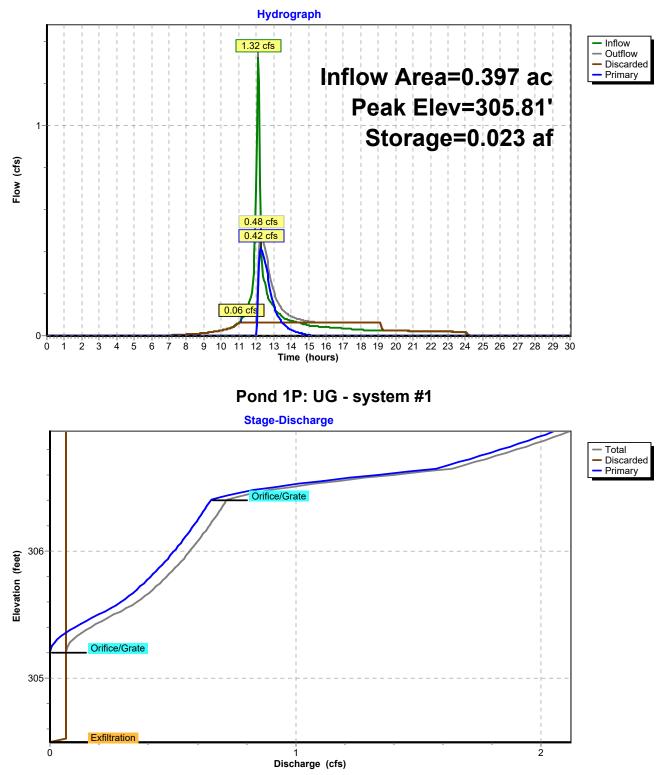
Pond 1P: UG - system #1 - Chamber Wizard Field A

Chamber Model = ACF R-Tank HD 1 (ACF Environmental R-Tank HD)

Inside= 15.7"W x 17.3"H => 1.80 sf x 2.35'L = 4.2 cf Outside= 15.7"W x 17.3"H => 1.89 sf x 2.35'L = 4.4 cf


10 Chambers/Row x 2.35' Long = 23.46' Row Length +24.0" End Stone x 2 = 27.46' Base Length 29 Rows x 15.7" Wide + 24.0" Side Stone x 2 = 42.06' Base Width 6.0" Base + 17.3" Chamber Height + 6.0" Cover = 2.44' Field Height

290 Chambers x 4.2 cf = 1,224.3 cf Chamber Storage 290 Chambers x 4.4 cf = 1,288.8 cf Displacement


2,821.9 cf Field - 1,288.8 cf Chambers = 1,533.1 cf Stone x 40.0% Voids = 613.3 cf Stone Storage

Chamber Storage + Stone Storage = 1,837.6 cf = 0.042 af Overall Storage Efficiency = 65.1% Overall System Size = 27.46' x 42.06' x 2.44'

290 Chambers 104.5 cy Field 56.8 cy Stone

Pond 1P: UG - system #1

Summary for Pond 2P: UG - system #2

Inflow Area =	1.434 ac, 43.88% Impervious, Inflow De	epth = 1.83" for 10-Year event
Inflow =	2.67 cfs @ 12.11 hrs, Volume=	0.219 af
Outflow =	1.42 cfs @ 12.22 hrs, Volume=	0.219 af, Atten= 47%, Lag= 6.2 min
Discarded =	0.08 cfs @ 9.55 hrs, Volume=	0.120 af
Primary =	1.33 cfs @ 12.22 hrs, Volume=	0.098 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 294.72' @ 12.22 hrs Surf.Area= 0.034 ac Storage= 0.048 af

Plug-Flow detention time= 55.4 min calculated for 0.218 af (100% of inflow) Center-of-Mass det. time= 55.3 min (847.6 - 792.2)

Volume	Invert	Avail.Storage	Storage Description
#1A	292.80'	0.020 af	43.37'W x 34.50'L x 3.17'H Field A
			0.109 af Overall - 0.060 af Embedded = 0.049 af x 40.0% Voids
#2A	293.30'	0.057 af	ACF R-Tank HD 1.5 x 390 Inside #1
			Inside= 15.7"W x 26.0"H => 2.70 sf x 2.35'L = 6.3 cf
			Outside= 15.7"W x 26.0"H => 2.84 sf x 2.35'L = 6.7 cf
			390 Chambers in 30 Rows
		0 076 of	Total Available Storage

0.076 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	293.60'	7.0" Vert. Orifice/Grate C= 0.600	
#2	Primary	294.50'	8.0" Vert. Orifice/Grate C= 0.600	
#3	Primary	295.80'	12.0" Horiz. Orifice/Grate C= 0.600	
	-		Limited to weir flow at low heads	
#4	Discarded	292.80'	2.410 in/hr Exfiltration over Surface area	Phase-In= 0.01'

Discarded OutFlow Max=0.08 cfs @ 9.55 hrs HW=292.83' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=1.31 cfs @ 12.22 hrs HW=294.71' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 1.16 cfs @ 4.35 fps)

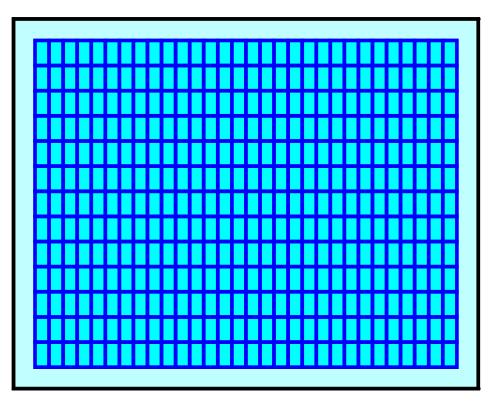
-2=Orifice/Grate (Orifice Controls 0.15 cfs @ 1.56 fps)

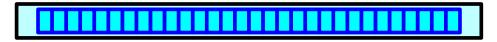
-3=Orifice/Grate (Controls 0.00 cfs)

Pond 2P: UG - system #2 - Chamber Wizard Field A

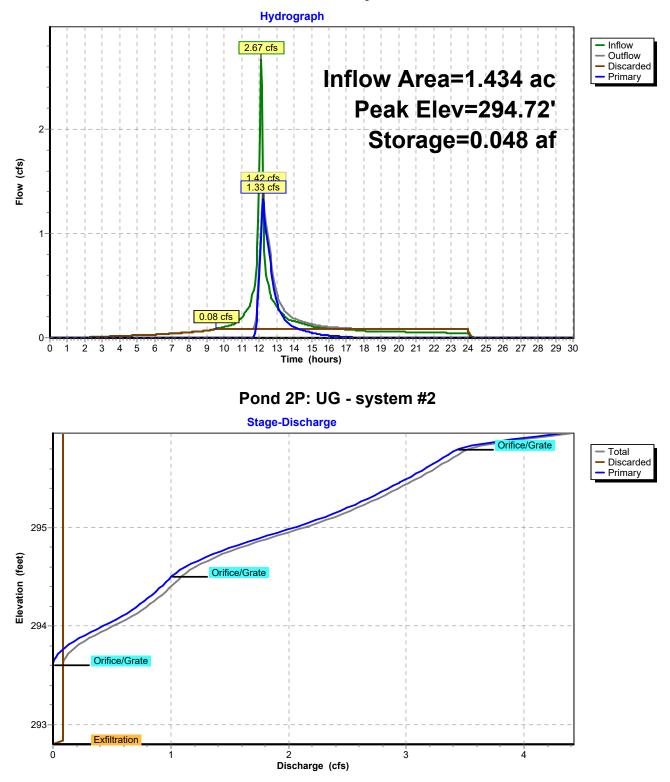
Chamber Model = ACF R-Tank HD 1.5 (ACF Environmental R-Tank HD)

Inside= 15.7"W x 26.0"H => 2.70 sf x 2.35'L = 6.3 cf Outside= 15.7"W x 26.0"H => 2.84 sf x 2.35'L = 6.7 cf

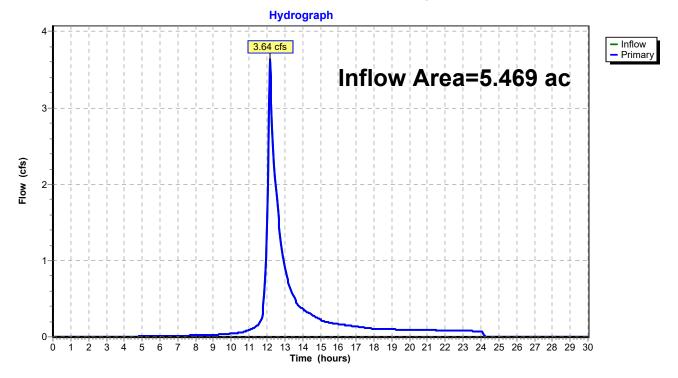

13 Chambers/Row x 2.35' Long = 30.50' Row Length +24.0" End Stone x 2 = 34.50' Base Length 30 Rows x 15.7" Wide + 24.0" Side Stone x 2 = 43.37' Base Width 6.0" Base + 26.0" Chamber Height + 6.0" Cover = 3.17' Field Height


390 Chambers x 6.3 cf = 2,469.8 cf Chamber Storage 390 Chambers x 6.7 cf = 2,599.7 cf Displacement

4,735.6 cf Field - 2,599.7 cf Chambers = 2,135.8 cf Stone x 40.0% Voids = 854.3 cf Stone Storage


Chamber Storage + Stone Storage = 3,324.1 cf = 0.076 afOverall Storage Efficiency = 70.2%Overall System Size = $34.50' \times 43.37' \times 3.17'$

390 Chambers 175.4 cy Field 79.1 cy Stone

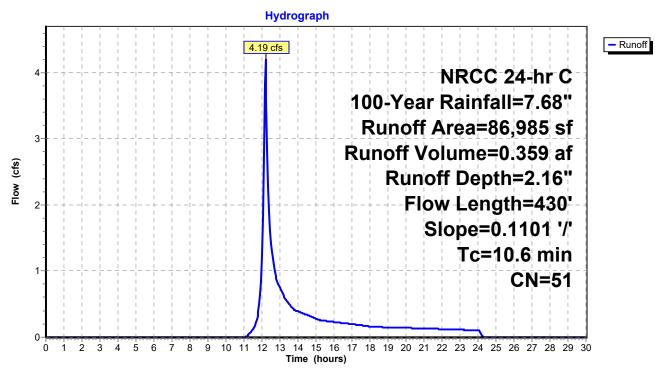

Pond 2P: UG - system #2

Summary for Link 1L: STUDY POINT- Amethyst Brook

Inflow Area	a =	5.469 ac, 28.03% Impervious, Inflow Depth = 0.78" for 10-Year event	
Inflow	=	3.64 cfs @ 12.16 hrs, Volume= 0.355 af	
Primary	=	3.64 cfs @ 12.16 hrs, Volume= 0.355 af, Atten= 0%, Lag= 0.0 mi	in

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link 1L: STUDY POINT- Amethyst Brook


Summary for Subcatchment P1: South of Amherst Road

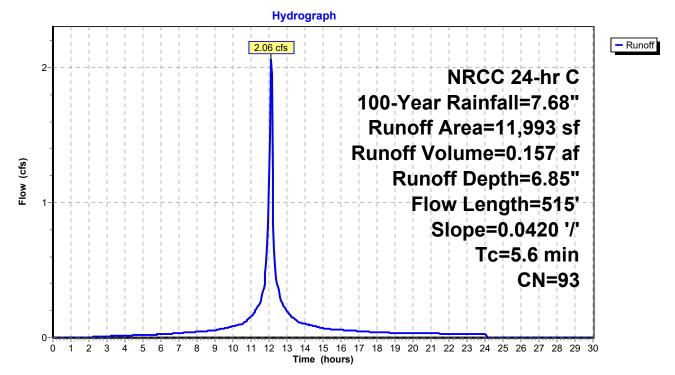
Runoff = 4.19 cfs @ 12.19 hrs, Volume= 0.359 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	A	rea (sf)	CN I	Description						
*		7,024	98	Impervious HSG A						
*		806	98 I	Impervious HSG B						
		39,100	36 \	Noods, Fai	r, HSG A					
		30,655	60	Noods, Fai	Voods, Fair, HSG B					
		9,400	49 :	50-75% Gra	ass cover, l	Fair, HSG A				
		86,985	51	51 Weighted Average						
		79,155	ę	91.00% Pervious Area						
		7,830	ę	9.00% Impe	ervious Are	a				
	Тс	Length	Slope		Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	10.6	430	0.1101	0.68		Lag/CN Method,				
						Contour Length= 9,580' Interval= 1'				

Subcatchment P1: South of Amherst Road

Summary for Subcatchment P1A: Amherst rd


[49] Hint: Tc<2dt may require smaller dt

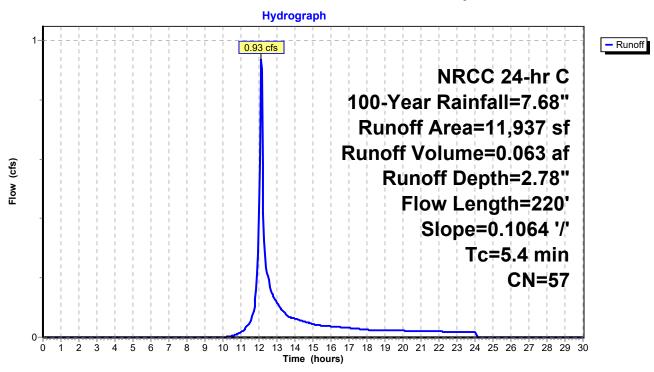
Runoff = 2.06 cfs @ 12.12 hrs, Volume= 0.157 af, Depth= 6.85"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

_	A	rea (sf)	CN	Description					
*		10,800	98	Paved road, HSG A					
_		1,193	49	50-75% Grass cover, Fair, HSG A					
		11,993	93	Weighted Average					
		1,193		9.95% Pervious Area					
		10,800		90.05% Imp	pervious Ar	ea			
	Tc	Length	Slope	,	Capacity	Description			
_	(min)	(feet)	(ft/ft) (ft/sec)	(cfs)				
	5.6	515	0.0420) 1.53		Lag/CN Method,			
						Contour Length= 504' Interval= 1'			

Subcatchment P1A: Amherst rd

Summary for Subcatchment P2A: Part of #20 and 24 impervious


[49] Hint: Tc<2dt may require smaller dt

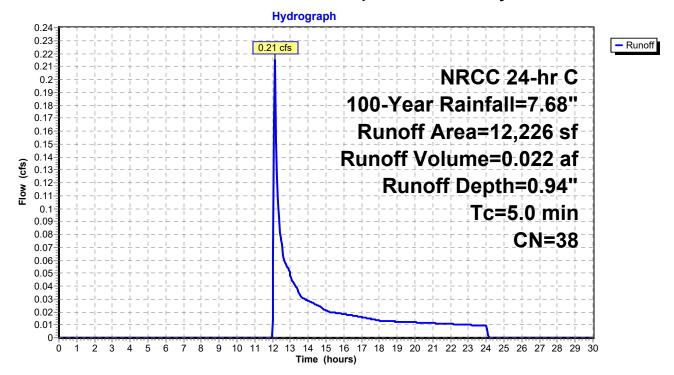
Runoff = 0.93 cfs @ 12.13 hrs, Volume= 0.063 af, Depth= 2.78"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	A	rea (sf)	CN	Description						
*		2,647	98	Impervious HSG A						
		7,000	49	50-75% Grass cover, Fair, HSG A						
		2,290	36	Noods, Fair, HSG A						
		11,937	57	Veighted Average						
		9,290		77.83% Pervious Area						
		2,647		22.17% Imp	pervious Ar	ea				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	5.4	220	0.1064	0.68		Lag/CN Method,				
						Contour Length= 1,270' Interval= 1'				

Subcatchment P2A: Part of #20 and 24 impervious

Summary for Subcatchment P2B: slope below driveway


[49] Hint: Tc<2dt may require smaller dt

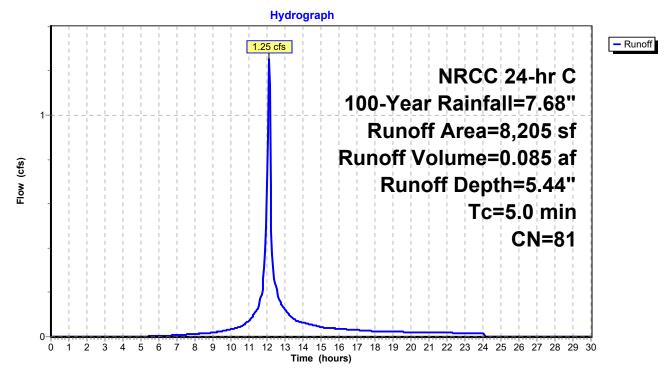
Runoff = 0.21 cfs @ 12.15 hrs, Volume= 0.022 af, Depth= 0.94"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

_	A	rea (sf)	CN	Description						
		11,888	36	Woods, Fair, HSG A						
*		338	98	Wall						
		12,226	38	Weighted A	verage					
		11,888		97.24% Per	rvious Area	l				
		338		2.76% Impe	ervious Area	а				
	Тс	Length	Slop	e Velocity	Capacity	Description				
_	(min)	(feet)	(ft/ft	,	(cfs)					
	5.0					Direct Entry,				

Subcatchment P2B: slope below driveway

Summary for Subcatchment P2C: Entrance drive


[49] Hint: Tc<2dt may require smaller dt

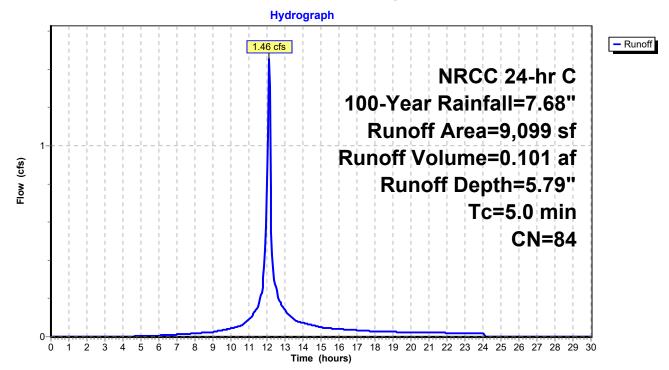
Runoff = 1.25 cfs @ 12.11 hrs, Volume= 0.085 af, Depth= 5.44"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

_	A	rea (sf)	CN	Description							
*		5,389	98	Impervious	mpervious						
_		2,816	49	50-75% Grass cover, Fair, HSG A							
		8,205	81	Weighted A	/eighted Average						
		2,816		34.32% Pervious Area							
		5,389		65.68% Imp	pervious Ar	rea					
_	Tc (min)	Length (feet)	Slope (ft/ft	,	Capacity (cfs)	I					
	5.0					Direct Entry,					

Subcatchment P2C: Entrance drive

Summary for Subcatchment P2D: Parking lot and Roof

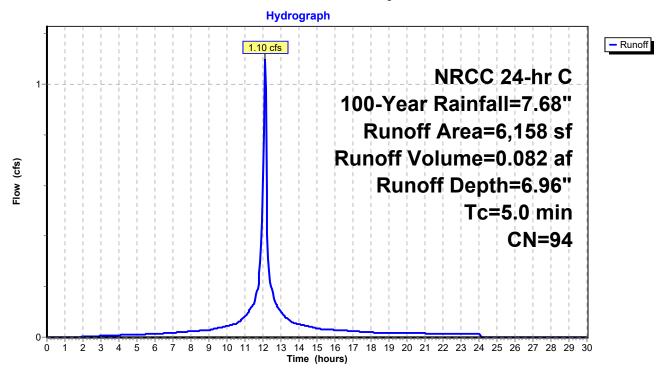

[49] Hint: Tc<2dt may require smaller dt

1.46 cfs @ 12.11 hrs, Volume= 0.101 af, Depth= 5.79" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	Area (sf)	CN	Description							
*	6,504	98	Impervious	mpervious						
	2,595	49	50-75% Gra	50-75% Grass cover, Fair, HSG A						
	9,099	84	Weighted A	Veighted Average						
	2,595		28.52% Pe	28.52% Pervious Area						
	6,504		71.48% lmp	pervious Ar	rea					
٦ miı)	c Length	Slop (ft/f		Capacity (cfs)	Description					
<u>`</u>	.0			()	Direct Entry,					

Subcatchment P2D: Parking lot and Roof


[49] Hint: Tc<2dt may require smaller dt

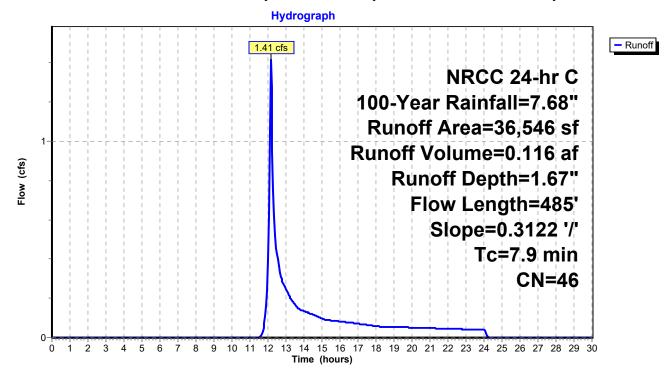
1.10 cfs @ 12.11 hrs, Volume= 0.082 af, Depth= 6.96" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	A	rea (sf)	CN	Description							
*		4,254	98	Impervious	mpervious						
		653	96	Gravel surface, HSG A							
		451	49	50-75% Gra	0-75% Grass cover, Fair, HSG A						
*		800	98	Impervious	ipervious - roof						
		6,158	94	Weighted A	/eighted Average						
		1,104		17.93% Pe	rvious Area	a					
		5,054		82.07% Imp	pervious Ar	rea					
	Тс	Length	Slope		Capacity						
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)						
	5.0					Direct Entry,					

Subcatchment P2E: Driveway and back roof

Summary for Subcatchment P3: part of #24 impervious + wooded slope


Runoff = 1.41 cfs @ 12.16 hrs, Volume= 0.116 af, Depth= 1.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

_	A	rea (sf)	CN I	Description						
*		4,706	98 I	Impervious						
		26,390	36 \	Woods, Fair, HSG A						
		5,000	49 క	0-75% Grass cover, Fair, HSG A						
		450	49 క	50-75% Gra	0-75% Grass cover, Fair, HSG A					
		36,546	46 \	Weighted Average						
		31,840	8	37.12% Pei	vious Area					
		4,706		12.88% Imp	pervious Ar	ea				
	Тс	Length	Slope		Capacity	Description				
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
	7.9	485	0.3122	1.03		Lag/CN Method,				
						Contour Length 11 408' Interval 1'				

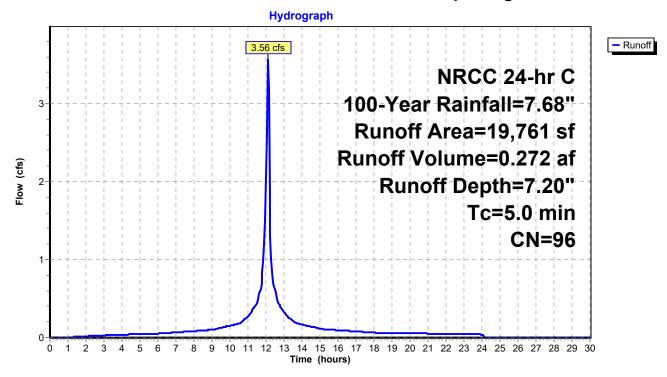
Contour Length= 11,408' Interval= 1

Subcatchment P3: part of #24 impervious + wooded slope

Summary for Subcatchment P3A: #22 drive and lower parking lots

Printed 12/14/2020

Page 60


[49] Hint: Tc<2dt may require smaller dt

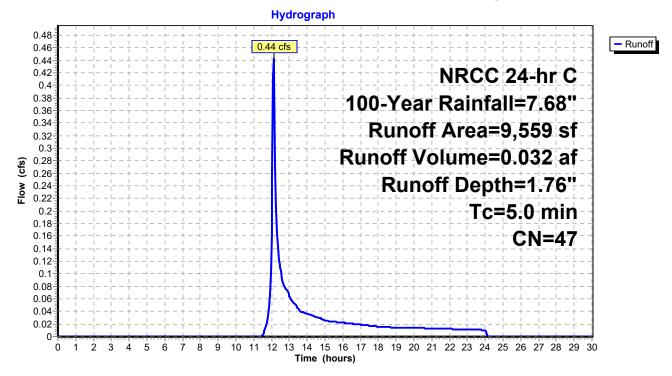
3.56 cfs @ 12.11 hrs, Volume= 0.272 af, Depth= 7.20" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

	Area (sf)	CN	Description					
*	17,647	98	Impervious					
	1,300	96	Gravel surfa	ace, HSG A	A			
	814	49	50-75% Gra	ass cover, l	Fair, HSG A			
	19,761	96		Veighted Average				
	2,114		10.70% Pe					
	17,647		89.30% Imp	pervious Ar	rea			
Т	c Lonath	Slone	e Velocity	Capacity	Description			
	5	Slope	,	Capacity	•			
(min	, , ,	(ft/ft) (ft/sec)	(cfs)				
5.	0				Direct Entry,			

Subcatchment P3A: #22 drive and lower parking lots

Summary for Subcatchment P3B: slope below parking

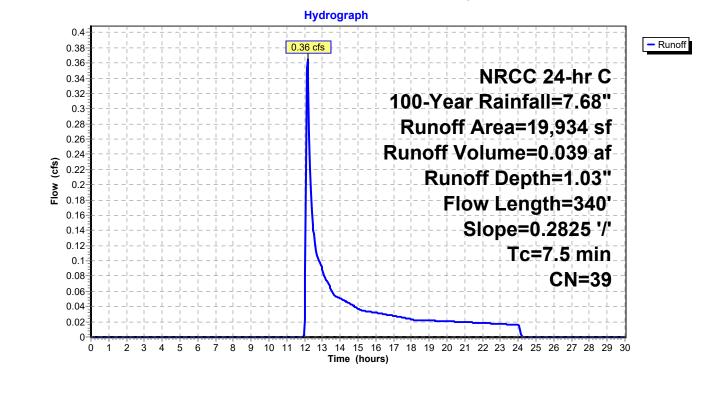

[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.44 cfs @ 12.13 hrs, Volume= 0.032 af, Depth= 1.76"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

Α	rea (sf)	CN	Description					
*	1,285	98	Impervious					
	6,274	36	Woods, Fai	r, HSG A				
	2,000	49	50-75% Gra	ass cover, F	Fair, HSG A			
	9,559 8,274 1,285	47	Weighted A 86.56% Per 13.44% Imp	rvious Area				
Tc (min)	Length (feet)	Slop (ft/ft	,	Description				
5.0					Direct Entry,			

Subcatchment P3B: slope below parking


Summary for Subcatchment P4: east drainage area

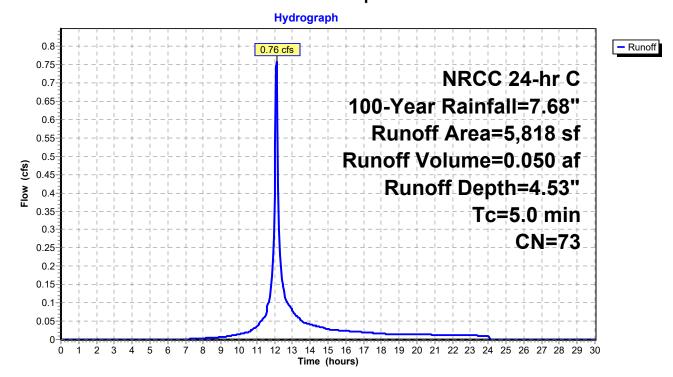
Runoff = 0.36 cfs @ 12.17 hrs, Volume= 0.039 af, Depth= 1.03"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

_	A	rea (sf)	CN	Description					
		18,814	36	Woods, Fai	r, HSG A				
*		1,120	98	Impervious					
		19,934 18,814 1,120		Weighted A 94.38% Pei 5.62% Impe	vious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	,	Capacity (cfs)	Description			
	7.5	340	0.2825	0.75		Lag/CN Method, Contour Length= 5,632' Interval= 1'			

Subcatchment P4: east drainage area

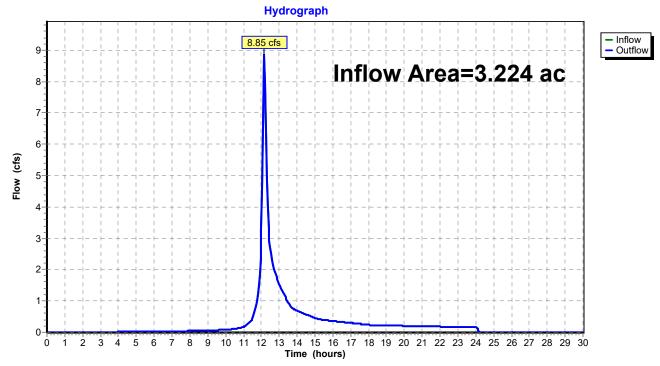
Summary for Subcatchment P4A: part of #22 roof


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.76 cfs @ 12.12 hrs, Volume= 0.050 af, Depth= 4.53"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-Year Rainfall=7.68"

A	rea (sf)	CN	Description		
	3,455	98	Unconnecte	ed roofs, HS	SG A
	2,363	36	Woods, Fai	r, HSG A	
	5,818	73	Weighted A	verage	
	2,363		40.62% Pei	vious Area	3
	3,455		59.38% Imp	pervious Ar	rea
	3,455		100.00% U	nconnected	d
т.	1	<u>Olan</u>	Valasita.	0	Description
Tc	Length	Slope		Capacity	Description
<u>(min)</u>	(feet)	(ft/ft) (ft/sec)	(cfs)	
5.0					Direct Entry,

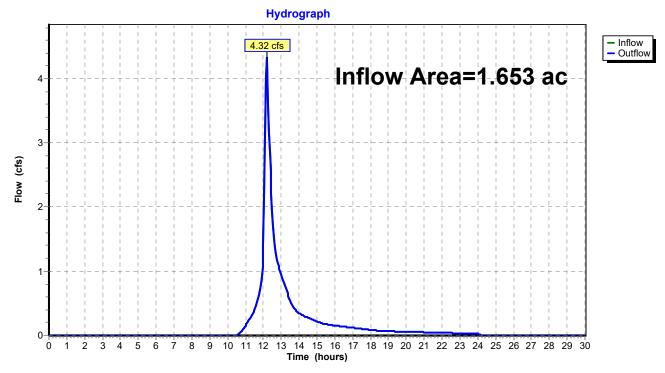


Summary for Reach 1R: ex swale

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area	a =	3.224 ac, 23.86% Impervious, Inflow Depth = 2.61" for 100-Year ev	'ent
Inflow	=	8.85 cfs @ 12.16 hrs, Volume= 0.702 af	
Outflow	=	8.85 cfs @ 12.16 hrs, Volume= 0.702 af, Atten= 0%, Lag= 0.0	ጋ min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

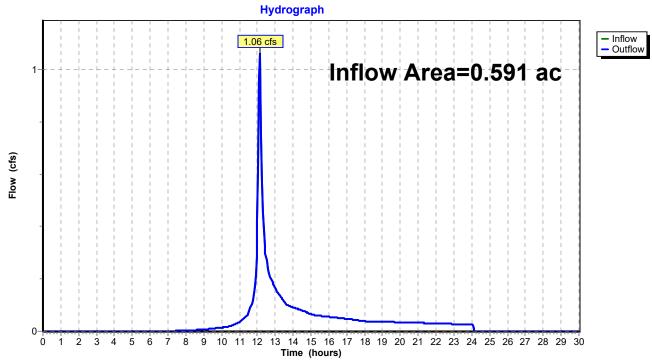

Reach 1R: ex swale

Summary for Reach 2R: central DA

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	1.653 ac, 3	39.84% Impervious,	Inflow Depth = 2.51	for 100-Year event
Inflow =	4.32 cfs @	12.19 hrs, Volume	= 0.346 af	
Outflow =	4.32 cfs @	12.19 hrs, Volume	= 0.346 af, <i>I</i>	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

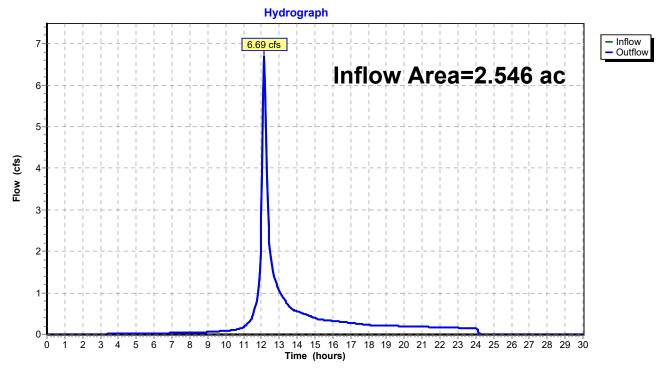

Reach 2R: central DA

Summary for Reach 3R: East DA

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	0.591 ac, 17.77% Impervious, Inflow D	Pepth = 1.82" for 100-Year event
Inflow =	1.06 cfs @ 12.14 hrs, Volume=	0.090 af
Outflow =	1.06 cfs @ 12.14 hrs, Volume=	0.090 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs


Reach 3R: East DA

Summary for Reach 4R: (new Reach)

[40] Hint: Not Described (Outflow=Inflow)

Inflow Area =	2.546 ac,	19.18% Impervious,	Inflow Depth = 2.7	73" for 100-Year event
Inflow =	6.69 cfs @	12.16 hrs, Volume	e= 0.580 af	
Outflow =	6.69 cfs @	12.16 hrs, Volume	e= 0.580 af,	Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Reach 4R: (new Reach)

Summary for Pond 1P: UG - system #1

Inflow Area =	0.397 ac, 68.73% Impervious, Inflow De	epth = 5.62" for 100-Year event
Inflow =	2.71 cfs @ 12.11 hrs, Volume=	0.186 af
Outflow =	2.07 cfs @ 12.17 hrs, Volume=	0.185 af, Atten= 24%, Lag= 3.7 min
Discarded =	0.06 cfs @ 9.70 hrs, Volume=	0.085 af
Primary =	2.01 cfs @ 12.17 hrs, Volume=	0.100 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 2 Peak Elev= 306.86' @ 12.17 hrs Surf.Area= 0.027 ac Storage= 0.041 af

Plug-Flow detention time= 48.8 min calculated for 0.185 af (99% of inflow) Center-of-Mass det. time= 46.4 min (849.9 - 803.5)

Volume	Invert	Avail.Storage	Storage Description
#1A	304.50'	0.014 af	42.06'W x 27.46'L x 2.44'H Field A
			0.065 af Overall - 0.030 af Embedded = 0.035 af x 40.0% Voids
#2A	305.00'	0.028 af	ACF R-Tank HD 1 x 290 Inside #1
			Inside= 15.7"W x 17.3"H => 1.80 sf x 2.35'L = 4.2 cf
			Outside= 15.7"W x 17.3"H => 1.89 sf x 2.35'L = 4.4 cf
			290 Chambers in 29 Rows
		0.042 af	Total Available Storage

0.042 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	305.20'	5.0" Vert. Orifice/Grate C= 0.600	
#2	Primary	306.40'	8.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#3	Discarded	304.50'	2.410 in/hr Exfiltration over Surface area	Phase-In= 0.01'

Discarded OutFlow Max=0.06 cfs @ 9.70 hrs HW=304.52' (Free Discharge) **3=Exfiltration** (Exfiltration Controls 0.06 cfs)

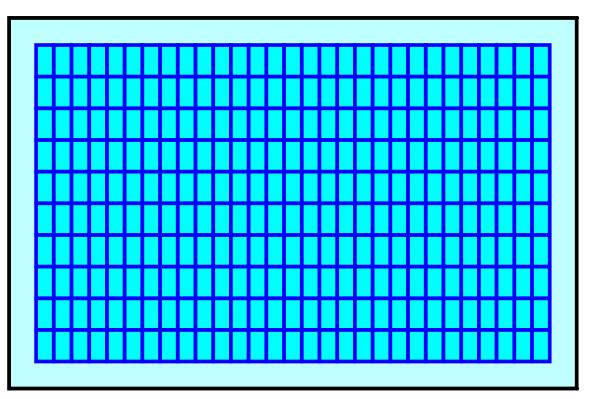
Primary OutFlow Max=1.86 cfs @ 12.17 hrs HW=306.81' (Free Discharge) **1=Orifice/Grate** (Orifice Controls 0.78 cfs @ 5.71 fps) **2=Orifice/Crate** (Orifice Controls 0.78 cfs @ 2.10 fps)

-2=Orifice/Grate (Orifice Controls 1.08 cfs @ 3.10 fps)

Pond 1P: UG - system #1 - Chamber Wizard Field A

Chamber Model = ACF R-Tank HD 1 (ACF Environmental R-Tank HD)

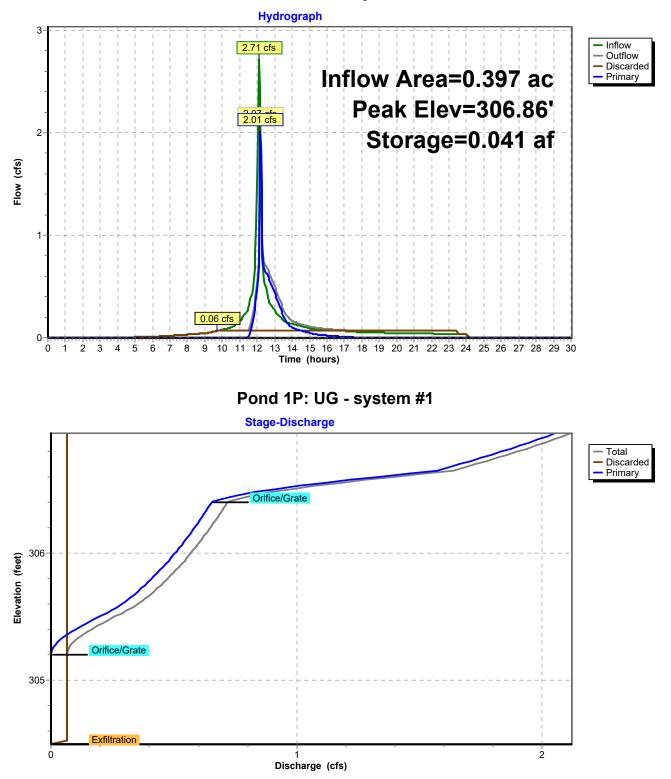
Inside= 15.7"W x 17.3"H => 1.80 sf x 2.35'L = 4.2 cf Outside= 15.7"W x 17.3"H => 1.89 sf x 2.35'L = 4.4 cf


10 Chambers/Row x 2.35' Long = 23.46' Row Length +24.0" End Stone x 2 = 27.46' Base Length 29 Rows x 15.7" Wide + 24.0" Side Stone x 2 = 42.06' Base Width 6.0" Base + 17.3" Chamber Height + 6.0" Cover = 2.44' Field Height

290 Chambers x 4.2 cf = 1,224.3 cf Chamber Storage 290 Chambers x 4.4 cf = 1,288.8 cf Displacement

2,821.9 cf Field - 1,288.8 cf Chambers = 1,533.1 cf Stone x 40.0% Voids = 613.3 cf Stone Storage

Chamber Storage + Stone Storage = 1,837.6 cf = 0.042 af Overall Storage Efficiency = 65.1% Overall System Size = 27.46' x 42.06' x 2.44'


290 Chambers 104.5 cy Field 56.8 cy Stone

20.024 PROP REV

Prepared by Berkshire Design Group HydroCAD® 10.00-24 s/n 10759 © 2018 HydroCAD Software Solutions LLC

Pond 1P: UG - system #1

Summary for Pond 2P: UG - system #2

Inflow Area =	1.434 ac, 43.88% Impervious, Inflow De	epth = 3.94" for 100-Year event
Inflow =	5.81 cfs @ 12.12 hrs, Volume=	0.471 af
Outflow =	4.11 cfs @ 12.19 hrs, Volume=	0.469 af, Atten= 29%, Lag= 4.3 min
Discarded =	0.08 cfs @ 7.05 hrs, Volume=	0.156 af
Primary =	4.03 cfs @ 12.19 hrs, Volume=	0.314 af

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs / 3 Peak Elev= 295.93' @ 12.19 hrs Surf.Area= 0.034 ac Storage= 0.076 af

Plug-Flow detention time= 48.0 min calculated for 0.469 af (100% of inflow) Center-of-Mass det. time= 46.3 min (838.9 - 792.7)

Volume	Invert	Avail.Storage	Storage Description
#1A	292.80'	0.020 af	43.37'W x 34.50'L x 3.17'H Field A
			0.109 af Overall - 0.060 af Embedded = 0.049 af x 40.0% Voids
#2A	293.30'	0.057 af	ACF R-Tank HD 1.5 x 390 Inside #1
			Inside= 15.7"W x 26.0"H => 2.70 sf x 2.35'L = 6.3 cf
			Outside= 15.7"W x 26.0"H => 2.84 sf x 2.35'L = 6.7 cf
			390 Chambers in 30 Rows
		0 076 af	Total Available Storage

0.076 af Total Available Storage

Storage Group A created with Chamber Wizard

Device	Routing	Invert	Outlet Devices	
#1	Primary	293.60'	7.0" Vert. Orifice/Grate C= 0.600	
#2	Primary	294.50'	8.0" Vert. Orifice/Grate C= 0.600	
#3	Primary	295.80'	12.0" Horiz. Orifice/Grate C= 0.600	
			Limited to weir flow at low heads	
#4	Discarded	292.80'	2.410 in/hr Exfiltration over Surface area	Phase-In= 0.01'

Discarded OutFlow Max=0.08 cfs @ 7.05 hrs HW=292.83' (Free Discharge) **4=Exfiltration** (Exfiltration Controls 0.08 cfs)

Primary OutFlow Max=3.97 cfs @ 12.19 hrs HW=295.91' (Free Discharge)

-1=Orifice/Grate (Orifice Controls 1.83 cfs @ 6.85 fps)

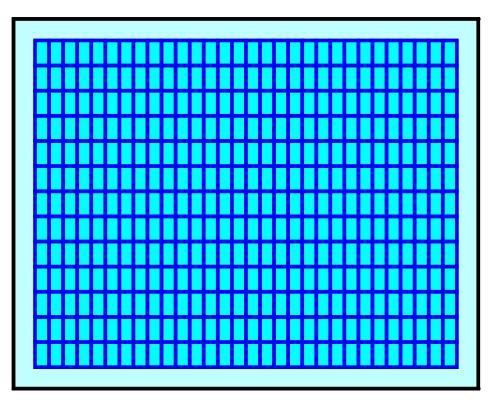
-2=Orifice/Grate (Orifice Controls 1.75 cfs @ 5.00 fps)

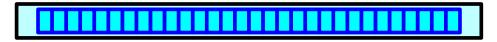
-3=Orifice/Grate (Weir Controls 0.39 cfs @ 1.10 fps)

Pond 2P: UG - system #2 - Chamber Wizard Field A

Chamber Model = ACF R-Tank HD 1.5 (ACF Environmental R-Tank HD)

Inside= 15.7"W x 26.0"H => 2.70 sf x 2.35'L = 6.3 cf Outside= 15.7"W x 26.0"H => 2.84 sf x 2.35'L = 6.7 cf

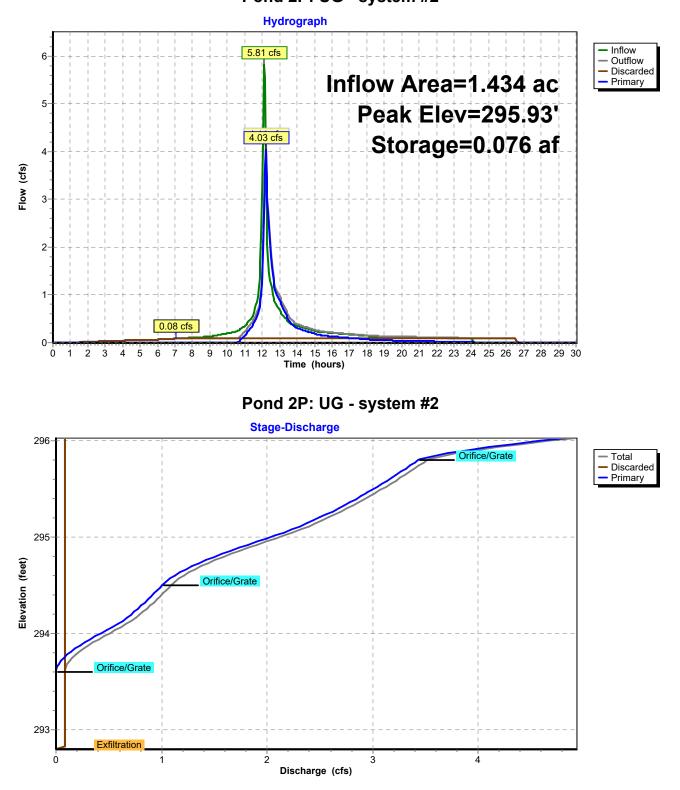

13 Chambers/Row x 2.35' Long = 30.50' Row Length +24.0" End Stone x 2 = 34.50' Base Length 30 Rows x 15.7" Wide + 24.0" Side Stone x 2 = 43.37' Base Width 6.0" Base + 26.0" Chamber Height + 6.0" Cover = 3.17' Field Height


390 Chambers x 6.3 cf = 2,469.8 cf Chamber Storage 390 Chambers x 6.7 cf = 2,599.7 cf Displacement

4,735.6 cf Field - 2,599.7 cf Chambers = 2,135.8 cf Stone x 40.0% Voids = 854.3 cf Stone Storage

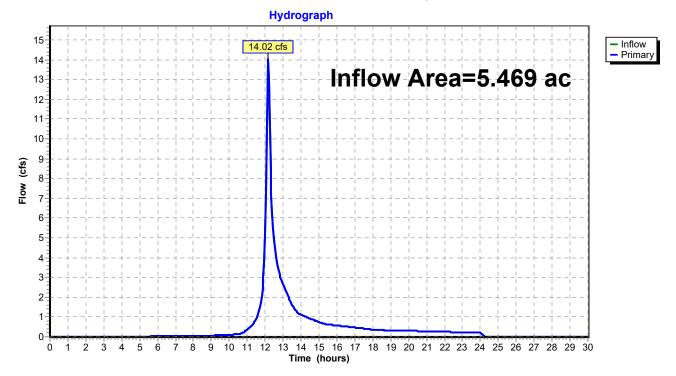
Chamber Storage + Stone Storage = 3,324.1 cf = 0.076 afOverall Storage Efficiency = 70.2%Overall System Size = $34.50' \times 43.37' \times 3.17'$

390 Chambers 175.4 cy Field 79.1 cy Stone



20.024 PROP REV

Prepared by Berkshire Design Group HydroCAD® 10.00-24 s/n 10759 © 2018 HydroCAD Software Solutions LLC


Pond 2P: UG - system #2

Summary for Link 1L: STUDY POINT- Amethyst Brook

Inflow Area	a =	5.469 ac, 28.03% Impervious, Inflow Depth = 2.50" for 100-Year event
Inflow	=	14.02 cfs @ 12.17 hrs, Volume= 1.137 af
Primary	=	14.02 cfs @ 12.17 hrs, Volume= 1.137 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-30.00 hrs, dt= 0.05 hrs

Link 1L: STUDY POINT- Amethyst Brook

Pelham, Massachusetts

Appendix D – Groundwater Recharge Calculations

December 21, 2020

Pelham – 20-22 Amherst Road Stormwater Standard 3 – Recharge Calculations

Existing Impervious Area

Table 1 shows the existing and proposed impervious and gravel areas on the re-development site.

······································				
	Existing Area (sf)	Proposed Area (sf)	Increase in Area (sf)	
Impervious	27,450	41,840	14,410	
Gravel driveways	1,210	-	(1,210)	
TOTAL	28,660	41,840	13,200	

Table 1. Existing and Proposed Impervious Area

Proposed Impervious Area & Required Recharge Volume

Table 2 shows the required recharge volume.

Required Recharge Volume is calculated by applying the following equation:

Required Recharge Volume, $Rv = F \times I$

Where, F = Target Depth Factor, 0.60" (for HSG A) I = Impervious Area

Table 2. Proposed Increase in Impervious Area and Required Recharge Volume

Increase in	Required	Provided
Impervious	Recharge Volume	Recharge Volume
area (sq. ft.)	(cu. ft.)	(cu. ft.)
13,200	660	

The storage volume provided in **Table 2** is provided through storage below the outlets of the underground stormwater facilities.

This analysis utilizes the "Static Method" for determining required storage volume for infiltration features. Therefore, the minimum required storage volume is equal to the required recharge volume, tabulated above.

The provided infiltration storage volume of 1,170 cu. ft. exceeds the required recharge volume of 660 cu. ft. (considering all proposed new impervious surfaces at the future site).

December 21, 2020 Pelham – 22 Amherst Road Stormwater Standard 3 – Recharge Calculations Page 2 of 2

Capture Area Adjustment

The Massachusetts Stormwater Handbook requires an increase in storage capacity of infiltration features if only a portion of the site's impervious area is tributary to the stormwater practices. Because this is a redevelopment site, the recharge is calculated on the increase in impervious area. The increase in impervious area of 13,200 sf is entirely tributary to recharge facilities. The proposed design directs over 35,000 sf of impervious surfaces to storage and infiltration facilities.

Drawdown Time

The Rawls infiltration rate for the loamy sand (HSG A) is estimated at 2.41 inches per hour (Massachusetts Stormwater Standards). Drawdown time is dependent on the depth of the system below the lowest outlet and the rate of infiltration.

$$\frac{depth \ on \ inches}{2.41 \frac{in}{hr}} = drawdown \ time$$

UG System #	Elevation at base of system	Elevation of lowest outlet	Depth to infiltrate	Time to infiltrate
1	304.5	305.2	0.7 ft	3.5 hours
2	292.8	293.6	0.8 ft	4 hours

Table 3. Drawdown Time for Each System

The storage areas should draw down in less than 4 hours which is below the 72-hour requirement.

Pelham, Massachusetts

Stormwater Management Report

Appendix E – Water Quality Calculations

December 21, 2020

20-22 Amherst Road, Pelham, MA Stormwater Standard 4 – Water Quality Volume

Existing conditions include untreated gravel and impervious areas of 28,640 sf. Proposed conditions include 41,840 sf of impervious areas (driveways, parking areas, walkways and roofs) The increase in impervious area is 13,200 sq. ft. (Table 1).

Table 1. Existing and Proposed Impervious Areas

	Existing Area (sf)	Proposed Area (sf)	Increase in Area (sf)
Impervious	28,640	41,840	13,200

Required Water Quality Volume is calculated by applying the following equation:

Required Water Quality Volume, $WQV = D \times I$ Where, D = Depth Factor, 1"*; I = Impervious Area *Cold water fishery requires a 1" depth factor

Provided water quality volume is the storage provided below the outlet of the underground storage systems. Table 2 summarizes the water quality volume required and provided for the site.

Increase in Impervious Area (sf)	Water Quality Volume Required on increase (cf)	Water Quality Volume Provided in UG systems(cf)
13,200	1,100	1,170

Table 2. Required and Provided WQv

The water quality volume provided exceeds the water quality volume required on the increase in impervious area. Table 3 provides a breakdown of the water quality volume provided by drainage area.

Table 3. Water Quality Volume for Change in Impervious Area by Drainage Area.

Facility	Prop. Impervious Area directed to facility (sf)	Approx. Ex. impervious area (sf)	Impervious Area increase (sf)	Water Quality Volume (cf)	Water Quality Volume Provided (cf)
UG system #1	11,900	9,600	2,300	192	430
UG System #2	23,600	15,090	8,510	710	740

December 21, 2020 20-22 Amherst Road, Pelham, MA Stormwater Standard 4 – Water Quality Volume Page 2

The proposed stormwater facilities provide water quality volume for the increased impervious areas within the tributary drainage areas.

Prior to entering the UG systems, runoff from driveways and parking is treated by Water Quality Units, rated by the manufacturer at over 90% TSS removal. Runoff from roofs (with the exception of the rear roof of #20) is conveyed without treatment.

Table 4 provides a summary of the impervious areas tributary to the Water Quality Units.

Tuble 41110posed impervious Areas and Too Removal				
	WQU #1	WQU #2	WQU #3	Total
Proposed	10,400 sf	6,700 sf	11,900	29,000 sf

Table 4. Proposed Impervious Areas and TSS Removal

The impervious surfaces treated for TSS removal exceeds the new impervious surfaces created by more than a factor of 2.

Brief Stormceptor Sizing Report - WQ 1

Project Information & Location				
Project Name	20-22 Amherst Rd	Project Number	645710	
City	Pelham	State/ Province	Massachusetts	
Country	United States of America	Date	12/10/2020	
Designer Information		EOR Information (optional)		
Name	David Adams	Name		
Company	Contech	Company	Berkshire Design Group	
Phone #	207-855-6191	Phone #		
Email	dadams@conteches.com	Email		

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQ 1
Target TSS Removal (%)	80
TSS Removal (%) Provided	93
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary			
Stormceptor Model	% TSS Removal Provided		
STC 450i	93		
STC 900	96		
STC 1200	96		
STC 1800	97		
STC 2400	97		
STC 3600	98		
STC 4800	98		
STC 6000	99		
STC 7200	99		
STC 11000	99		
STC 13000	99		
STC 16000	99		

Stormceptor[®]

Sizing Details				
Drainage	Area	Water Quality Objective		
Total Area (acres)	0.24	TSS Removal ((%)	80.0
Imperviousness %	100.0	Runoff Volume Cap	ture (%)	
Rainfa	all	Oil Spill Capture Volume (Gal)		
Station Name	EAST BRIMFIELD LAKE	Peak Conveyed Flow Rate (CFS)		
State/Province	Massachusetts	Water Quality Flow R	ate (CFS)	
Station ID #	2107	Up Stre	am Storage	
Years of Records	45	Storage (ac-ft) Discharge (cfs)		rge (cfs)
Latitude	42°7'0"N	0.000 0.000		000
Longitude	72°8'0"W	Up Stream Flow Diversion		on

Max. Flow to Stormceptor (cfs)

	Particle Size Distribution (PSD) The selected PSD defines TSS removal			
	OK-110			
Particle Diameter (microns)	Distribution %	Specific Gravity		
1.0	0.0	2.65		
53.0	3.0	2.65		
75.0	15.0	2.65		
88.0	25.0	2.65		
106.0	41.0	2.65		
125.0	15.0	2.65		
150.0	1.0	2.65		
212.0	0.0	2.65		
	Notes			

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

Brief Stormceptor Sizing Report - WQ 2

Project Information & Location			
Project Name	20-22 Amherst Rd	Project Number	645710
City	Pelham	State/ Province	Massachusetts
Country	United States of America	Date	12/10/2020
Designer Information		EOR Information (optional)	
Name	David Adams	Name	
Company	Contech	Company	Berkshire Design Group
Phone #	207-855-6191	Phone #	
Email	dadams@conteches.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQ 2
Target TSS Removal (%)	80
TSS Removal (%) Provided	94
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	94	
STC 900	97	
STC 1200	97	
STC 1800	98	
STC 2400	98	
STC 3600	99	
STC 4800	99	
STC 6000	99	
STC 7200	99	
STC 11000	100	
STC 13000	100	
STC 16000	100	

Stormceptor[®]

Sizing Details				
Drainage Area		Water Quality Objective		
Total Area (acres)	0.15	TSS Removal (%) 80.0		80.0
Imperviousness %	100.0	Runoff Volume Capture (%)		
Rainfa	Rainfall		Oil Spill Capture Volume (Gal)	
Station Name	EAST BRIMFIELD LAKE	Peak Conveyed Flow Rate (CFS)		
State/Province	Massachusetts	Water Quality Flow Rate (CFS)		
Station ID #	2107	Up Stream Storage		
Years of Records	45	Storage (ac-ft)	Discha	rge (cfs)
Latitude	42°7'0"N	0.000	0.0	000
Longitude	72°8'0"W	Up Stream Flow Diversion		

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal				
	OK-110			
Particle Diameter (microns)	Distribution %	Specific Gravity		
1.0	0.0	2.65		
53.0	3.0	2.65		
75.0	15.0	2.65		
88.0	25.0	2.65		
106.0	41.0	2.65		
125.0	15.0	2.65		
150.0	1.0	2.65		
212.0	0.0	2.65		
Notes				

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and Runoff modules.

• Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal defined by the selected PSD, and based on stable site conditions only, after construction is completed.

• For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

Brief Stormceptor Sizing Report - WQ 3

Project Information & Location			
Project Name	20-22 Amherst Rd	Project Number	645710
City	Pelham	State/ Province	Massachusetts
Country	United States of America	Date	12/10/2020
Designer Information		EOR Information (optional)	
Name	David Adams	Name	
Company	Contech	Company	Berkshire Design Group
Phone #	207-855-6191	Phone #	
Email	dadams@conteches.com	Email	

Stormwater Treatment Recommendation

The recommended Stormceptor Model(s) which achieve or exceed the user defined water quality objective for each site within the project are listed in the below Sizing Summary table.

Site Name	WQ 3
Target TSS Removal (%)	80
TSS Removal (%) Provided	92
Recommended Stormceptor Model	STC 450i

The recommended Stormceptor Model achieves the water quality objectives based on the selected inputs, historical rainfall records and selected particle size distribution.

Stormceptor Sizing Summary		
Stormceptor Model	% TSS Removal Provided	
STC 450i	92	
STC 900	96	
STC 1200	96	
STC 1800	96	
STC 2400	97	
STC 3600	98	
STC 4800	98	
STC 6000	98	
STC 7200	99	
STC 11000	99	
STC 13000	99	
STC 16000	99	

Stormceptor[®]

Sizing Details						
Drainage	Drainage Area			Water Quality Objective		
Total Area (acres)	0.27	TSS Removal ((%)	80.0		
Imperviousness %	100.0	Runoff Volume Capture (%)				
Rainfa	Oil Spill Capture Volume (Gal)					
Station Name	EAST BRIMFIELD LAKE	Peak Conveyed Flow Rate (CFS)				
State/Province	Massachusetts	Water Quality Flow Rate (CFS)				
Station ID #	2107	Up Stream Storage				
Years of Records	45	Storage (ac-ft)	Discharge (cfs)			
Latitude	42°7'0"N	0.000	0.000			
Longitude	72°8'0"W	Up Stream Flow Diversion				

Max. Flow to Stormceptor (cfs)

Particle Size Distribution (PSD) The selected PSD defines TSS removal		
	OK-110	
Particle Diameter (microns)	Distribution %	Specific Gravity
1.0	0.0	2.65
53.0	3.0	2.65
75.0	15.0	2.65
88.0	25.0	2.65
106.0	41.0	2.65
125.0	15.0	2.65
150.0	1.0	2.65
212.0	0.0	2.65
	Notos	

• Stormceptor performance estimates are based on simulations using PCSWMM for Stormceptor, which uses the EPA Rainfall and

Runoff modules. • Design estimates listed are only representative of specific project requirements based on total suspended solids (TSS) removal

defined by the selected PSD, and based on stable site conditions only, after construction is completed. • For submerged applications or sites specific to spill control, please contact your local Stormceptor representative for further design assistance.

For Stormceptor Specifications and Drawings Please Visit:

https://www.conteches.com/technical-guides/search?filter=1WBC0O5EYX

Project: Location: Prepared For:	20-22 Amherst Rd Pelham, MA Eugene T Sullivan	C NTECH ENGINEERED SOLUTIONS
<u>Purpose:</u>	To calculate the water quality flow rate (WQF) over a given site area. In this siderived from the first 1" of runoff from the contributing impervious surface.	ituation the WQF is
<u>Reference:</u>	Massachusetts Dept. of Environmental Protection Wetlands Program / United Agriculture Natural Resources Conservation Service TR-55 Manual	States Department of
Procedure:	Determine unit peak discharge using Figure 1 or 2. Figure 2 is in tabular form the tc, read the unit peak discharge (qu) from Figure 1 or Table in Figure 2. qu following units: cfs/mi ² /watershed inches (csm/in).	
	Compute Q Rate using the following equation:	
	Q = (qu) (A) (WQV)	
	where:	

Q = flow rate associated with first 1" of runoff

qu = the unit peak discharge, in csm/in.

A = impervious surface drainage area (in square miles) WQV = water quality volume in watershed inches (1" in this case)

Structure Name	Impv. (acres)	A (miles ²)	t _c (min)	t _c (hr)	WQV (in)	qu (csm/in.)	Q (cfs)
WQU #1	0.24	0.0003730	5.0	0.083	1.00	795.00	0.30
WQU #2	0.15	0.0002403	5.0	0.083	1.00	795.00	0.19
WQU #3	0.27	0.0004269	5.0	0.083	1.00	795.00	0.34

Appendix F – Stormwater Management System – Operation & Maintenance Plan

Stormwater Management System Operation & Maintenance Plan

During Construction

The Contractor shall be responsible for inspection and maintenance during construction.

At all times, siltation fabric fencing, stakes and straw bales/wattles, sufficient to construct a sedimentation control barrier a minimum of 50 feet long, shall be stockpiled on the site in order to repair established barriers which may be damaged or breached.

An inspection of all erosion control and stormwater management systems shall be conducted by the Contractor at least once a week and during all rain storms until the completion of construction. In case of any noted breach or failure, the Contractor shall immediately make appropriate repairs to any erosion control system and notify the engineer of any problems involving stormwater management systems.

A rain storm shall be defined as any of the following:

- A storm in which rain is predicted to last for twelve consecutive hours or more.
- A storm for which a flash flood watch or warning is issued.
- A single storm predicted to have a cumulative rainfall of greater than one-half inch.
- A storm not meeting the previous three thresholds but which would mark a third consecutive day of measurable rainfall.

The Contractor shall also inspect the erosion control and stormwater management systems at times of significant increase in surface water runoff due to rapid thawing when the risk of failure of erosion control measures is elevated.

In such instances as remedial action is necessary, the Contractor shall repair any and all significant deficiencies in erosion control systems within two days.

The Pelham Department of Public Works shall be notified of any significant failure of stormwater management systems or erosion and sediment control measures and shall be notified of any release of pollutants to a water body (stream, brook, pond, etc.).

The Contractor shall remove the sediment from behind the fence of the sedimentation control barrier when the accumulated sediment has reached one-half of the original installed height of the barrier.

This project requires a NPDES General Permit for Stormwater Discharges from Construction Activities. Contractor and Owner are responsible for finalizing a Stormwater Pollution Prevention Plan (SWPPP) and filing for the NDPES permit prior to the start of construction. All clearing, grading, drainage, construction, and development shall be conducted in strict accordance with the SWPPP.

Stormwater Management Report

Post-Construction

Stormwater Management System Owner:

Home City Development Inc.

Party Responsible for Operation & Maintenance:

Home City Development Inc.

Inspection & Maintenance Schedule:

- 1) Driveway and Parking Lot Sweeping Driveway and parking area sweeping shall take place annually during the spring cleanup.
- 2) Grass and Stone Swales

The Amethyst Apartments development includes grass swales to convey stormwater to yard drains and culverts.

Inspect swales or conveyances multiple times in the first few months after construction and twice per year thereafter. Look for signs of erosion and, if found, repair immediately. Swales shall be mowed at least once per year to prevent the growth of shrubs or trees but may be mowed more often at the discretion of the property owner.

3) Catch basins

Structures shall be inspected four times per year and cleaned if sediment build up exceeds 6" but no less than every 2 years. Oil and sediments shall be removed and disposed of in accordance with local, state and federal guidelines and regulations. In the case of an oil or bulk pollutant release, the system must be cleaned immediately following the spill and the proper authorities notified.

4) Yard Drains

Yard drains should be inspected quarterly and cleaned annually or more often if required. Oil and sediments should be removed and disposed of in accordance with local, state and federal guidelines and regulations. In the case of an oil or bulk pollutant release, the system must be cleaned immediately following the spill and the proper authorities notified.

5) Water Quality Units

The stormwater treatment chambers are Stormceptors manufactured by Contech. These units provide water quality for the driveways and parking lots.

The stormwater treatment chamber should be inspected at regular intervals and maintained when necessary to ensure optimum performance. The system shall be inspected at least four times during the first year and at least twice per year thereafter. Sediment shall be removed any time it has built up to more than 6" deep. At a minimum, the unit shall be cleaned once per year. If sediment accumulates fast enough to require removal more than once per year, the inspection frequency shall be increased.

The visual inspection should ascertain that the system components are in working order and that there are no blockages or obstructions in the inlet and separation screen. The inspection should also quantify the accumulation of hydrocarbons, trash, and sediment in the system. Measuring pollutant accumulation can be done with a calibrated dipstick, tape measure or other measuring instrument.

The hydrodynamic separator system should be cleaned when the level of sediment has reached 6 inches or when an appreciable level of hydrocarbons and trash covers over 50% of the water surface of the separator. The level of sediment is easily determined by measuring from finished grade down to the top of the sediment pile. To avoid underestimating the level of sediment in the chamber, the measuring device must be lowered to the top of the sediment pile carefully. Particles at the top of the pile typically offer less resistance to the end of the rod than consolidated particles toward the bottom of the pile. Sediment shall be removed by a vacuum truck and disposed of in accordance with applicable regulations.

7) Subsurface detention and Infiltration Systems

Maintenance Requirements

- A. A routine maintenance effort is required to ensure proper performance of the R-Tank system. The Maintenance program should be focused on pretreatment systems. Ensuring these structures are clean and functioning properly will reduce the risk of contamination of the R-Tank system and stormwater released from the site. Pre-treatment systems shall be inspected yearly, or as directed by the regulatory agency and by the manufacturer (for proprietary systems). Maintain as needed using acceptable practices or following manufacturer's guidelines (for proprietary systems).
- B. Inspection and/or Maintenance Ports in the R-Tank system will need to be inspected for accumulation of sediments at least quarterly through the first year of operation and at least yearly thereafter. This is done by removing the cap of the port and using a measuring device long enough to reach the bottom of the R-Tank system and stiff enough to push through the loose sediments, allowing a depth measurement.
- C. If sediment has accumulated to the level noted in the R-Tank Maintenance Guide or beyond a level acceptable to the Owner's engineer, the R-Tank system should be flushed.
- D. A flushing event consists of pumping water into the Maintenance Port and/or adjacent structure, allowing the turbulent flows through the R-Tank system to re-suspend the fine sediments. If multiple Maintenance Ports have been installed, water should be pumped into each port to maximize flushing efficiency. Sediment-laden water can be filtered through a Dirtbag[®] or approved equivalent if permitted by the locality.

8) Outlet Control Structures

The outlet control structures for the R-Tanks shall be inspected quarterly and after large storms (greater than 2" in 24-hours) to ensure no debris is prohibiting flow through the outlet orifices in the riser pipe. Inspections should confirm that there is no standing water in the structure and that the bottom is visible. All materials removed from the outlet control structure shall be removed and disposed of in accordance with local, state and federal guidelines and regulations.

9) Storm Drain Outlet Protection

The integrity of riprap outlet armoring shall be inspected twice per year for signs of dislodged stones or erosion at the perimeter of the apron. Any damage shall be repaired to return the apron to the condition shown in the contract documents. While some growth of herbaceous plants is expected, regular trimming is required to prevent growth from restricting the free flow of water across the apron.

10) Level Lip Spreader

Inspect level lip spreaders multiple times in the first few months after construction and twice per year thereafter. Clean out any debris or sediment as needed. Note and repair any erosion or low spots at the ends of the curb of the spreader. It is recommended that sediment removal, if any, be performed after the completion of the spring snow melt.

Appendix G – Massachusetts DEP Stormwater Checklist

A. Introduction

Important: When filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

A Stormwater Report must be submitted with the Notice of Intent permit application to document compliance with the Stormwater Management Standards. The following checklist is NOT a substitute for the Stormwater Report (which should provide more substantive and detailed information) but is offered here as a tool to help the applicant organize their Stormwater Management documentation for their Report and for the reviewer to assess this information in a consistent format. As noted in the Checklist, the Stormwater Report must contain the engineering computations and supporting information set forth in Volume 3 of the Massachusetts Stormwater Handbook. The Stormwater Report must be prepared and certified by a Registered Professional Engineer (RPE) licensed in the Commonwealth.

The Stormwater Report must include:

- The Stormwater Checklist completed and stamped by a Registered Professional Engineer (see page 2) that certifies that the Stormwater Report contains all required submittals.¹ This Checklist is to be used as the cover for the completed Stormwater Report.
- Applicant/Project Name
- Project Address
- Name of Firm and Registered Professional Engineer that prepared the Report
- Long-Term Pollution Prevention Plan required by Standards 4-6
- Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan required by Standard 8²
- Operation and Maintenance Plan required by Standard 9

In addition to all plans and supporting information, the Stormwater Report must include a brief narrative describing stormwater management practices, including environmentally sensitive site design and LID techniques, along with a diagram depicting runoff through the proposed BMP treatment train. Plans are required to show existing and proposed conditions, identify all wetland resource areas, NRCS soil types, critical areas, Land Uses with Higher Potential Pollutant Loads (LUHPPL), and any areas on the site where infiltration rate is greater than 2.4 inches per hour. The Plans shall identify the drainage areas for both existing and proposed conditions at a scale that enables verification of supporting calculations.

As noted in the Checklist, the Stormwater Management Report shall document compliance with each of the Stormwater Management Standards as provided in the Massachusetts Stormwater Handbook. The soils evaluation and calculations shall be done using the methodologies set forth in Volume 3 of the Massachusetts Stormwater Handbook.

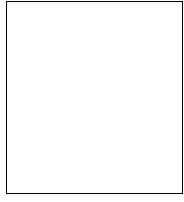
To ensure that the Stormwater Report is complete, applicants are required to fill in the Stormwater Report Checklist by checking the box to indicate that the specified information has been included in the Stormwater Report. If any of the information specified in the checklist has not been submitted, the applicant must provide an explanation. The completed Stormwater Report Checklist and Certification

B. Stormwater Checklist and Certification

¹ The Stormwater Report may also include the Illicit Discharge Compliance Statement required by Standard 10. If not included in the Stormwater Report, the Illicit Discharge Compliance Statement must be submitted prior to the discharge of stormwater runoff to the post-construction best management practices.

² For some complex projects, it may not be possible to include the Construction Period Erosion and Sedimentation Control Plan in the Stormwater Report. In that event, the issuing authority has the discretion to issue an Order of Conditions that approves the project and includes a condition requiring the proponent to submit the Construction Period Erosion and Sedimentation Control Plan before commencing any land disturbance activity on the site.

The following checklist is intended to serve as a guide for applicants as to the elements that ordinarily need to be addressed in a complete Stormwater Report. The checklist is also intended to provide conservation commissions and other reviewing authorities with a summary of the components necessary for a comprehensive Stormwater Report that addresses the ten Stormwater Standards.


Note: Because stormwater requirements vary from project to project, it is possible that a complete Stormwater Report may not include information on some of the subjects specified in the Checklist. If it is determined that a specific item does not apply to the project under review, please note that the item is not applicable (N.A.) and provide the reasons for that determination.

A complete checklist must include the Certification set forth below signed by the Registered Professional Engineer who prepared the Stormwater Report.

Registered Professional Engineer's Certification

I have reviewed the Stormwater Report, including the soil evaluation, computations, Long-term Pollution Prevention Plan, the Construction Period Erosion and Sedimentation Control Plan (if included), the Long-term Post-Construction Operation and Maintenance Plan, the Illicit Discharge Compliance Statement (if included) and the plans showing the stormwater management system, and have determined that they have been prepared in accordance with the requirements of the Stormwater Management Standards as further elaborated by the Massachusetts Stormwater Handbook. I have also determined that the information presented in the Stormwater Checklist is accurate and that the information presented in the Stormwater Report accurately reflects conditions at the site as of the date of this permit application.

Registered Professional Engineer Block and Signature

Signature and Date

Checklist

Project Type: Is the application for new development, redevelopment, or a mix of new and redevelopment?

New development

Redevelopment

Mix of New Development and Redevelopment

LID Measures: Stormwater Standards require LID measures to be considered. Document what environmentally sensitive design and LID Techniques were considered during the planning and design of the project:

	No disturbance to any Wetland Resource Areas
	Site Design Practices (e.g. clustered development, reduced frontage setbacks)
	Reduced Impervious Area (Redevelopment Only)
\boxtimes	Minimizing disturbance to existing trees and shrubs
	LID Site Design Credit Requested:
	Credit 1
	Credit 2
	Credit 3
	Use of "country drainage" versus curb and gutter conveyance and pipe
	Bioretention Cells (includes Rain Gardens)
	Constructed Stormwater Wetlands (includes Gravel Wetlands designs)
	Treebox Filter
	Water Quality Swale
\square	Grass Channel
	Green Roof
	Other (describe):

Standard 1: No New Untreated Discharges

No new untreated discharges

- \boxtimes Outlets have been designed so there is no erosion or scour to wetlands and waters of the Commonwealth
- Supporting calculations specified in Volume 3 of the Massachusetts Stormwater Handbook included.

Standard 2: Peak Rate Attenuation

- Standard 2 waiver requested because the project is located in land subject to coastal storm flowage and stormwater discharge is to a wetland subject to coastal flooding.
- Evaluation provided to determine whether off-site flooding increases during the 100-year 24-hour storm.
- Calculations provided to show that post-development peak discharge rates do not exceed predevelopment rates for the 2-year and 10-year 24-hour storms. If evaluation shows that off-site flooding increases during the 100-year 24-hour storm, calculations are also provided to show that post-development peak discharge rates do not exceed pre-development rates for the 100-year 24hour storm.

Standard 3: Recharge

- Soil Analysis provided.
- Required Recharge Volume calculation provided.
- Required Recharge volume reduced through use of the LID site Design Credits.
- Sizing the infiltration, BMPs is based on the following method: Check the method used.

Static Static	Simple Dynamic

Dynamic Field¹

- Runoff from all impervious areas at the site discharging to the infiltration BMP.
- Runoff from all impervious areas at the site is *not* discharging to the infiltration BMP and calculations are provided showing that the drainage area contributing runoff to the infiltration BMPs is sufficient to generate the required recharge volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume.
- Recharge BMPs have been sized to infiltrate the Required Recharge Volume *only* to the maximum extent practicable for the following reason:
 - Site is comprised solely of C and D soils and/or bedrock at the land surface
 - M.G.L. c. 21E sites pursuant to 310 CMR 40.0000
 - Solid Waste Landfill pursuant to 310 CMR 19.000
 - Project is otherwise subject to Stormwater Management Standards only to the maximum extent practicable.
- Calculations showing that the infiltration BMPs will drain in 72 hours are provided.
- Property includes a M.G.L. c. 21E site or a solid waste landfill and a mounding analysis is included.

¹ 80% TSS removal is required prior to discharge to infiltration BMP if Dynamic Field method is used.

Standard 3: Recharge (continued)

- ☐ The infiltration BMP is used to attenuate peak flows during storms greater than or equal to the 10year 24-hour storm and separation to seasonal high groundwater is less than 4 feet and a mounding analysis is provided.
- Documentation is provided showing that infiltration BMPs do not adversely impact nearby wetland resource areas.

Standard 4: Water Quality

The Long-Term Pollution Prevention Plan typically includes the following:

- Good housekeeping practices;
- Provisions for storing materials and waste products inside or under cover;
- Vehicle washing controls;
- Requirements for routine inspections and maintenance of stormwater BMPs;
- Spill prevention and response plans;
- Provisions for maintenance of lawns, gardens, and other landscaped areas;
- Requirements for storage and use of fertilizers, herbicides, and pesticides;
- Pet waste management provisions;
- · Provisions for operation and management of septic systems;
- Provisions for solid waste management;
- Snow disposal and plowing plans relative to Wetland Resource Areas;
- Winter Road Salt and/or Sand Use and Storage restrictions;
- Street sweeping schedules;
- Provisions for prevention of illicit discharges to the stormwater management system;
- Documentation that Stormwater BMPs are designed to provide for shutdown and containment in the event of a spill or discharges to or near critical areas or from LUHPPL;
- Training for staff or personnel involved with implementing Long-Term Pollution Prevention Plan;
- List of Emergency contacts for implementing Long-Term Pollution Prevention Plan.
- A Long-Term Pollution Prevention Plan is attached to Stormwater Report and is included as an attachment to the Wetlands Notice of Intent.
- Treatment BMPs subject to the 44% TSS removal pretreatment requirement and the one inch rule for calculating the water quality volume are included, and discharge:

	is within	the Zone	ll or	Interim	Wellhead	Protection	Area
--	-----------	----------	-------	---------	----------	------------	------

- \boxtimes is near or to other critical areas
- is within soils with a rapid infiltration rate (greater than 2.4 inches per hour)
- involves runoff from land uses with higher potential pollutant loads.
- The Required Water Quality Volume is reduced through use of the LID site Design Credits.
- Calculations documenting that the treatment train meets the 80% TSS removal requirement and, if applicable, the 44% TSS removal pretreatment requirement, are provided.

\boxtimes	The BMP is sized (and calculations provided) based on:
	The ½" or 1" Water Quality Volume or
	The equivalent flow rate associated with the Water Quality Volume and documentation is provided showing that the BMP treats the required water quality volume.
	The applicant proposes to use proprietary BMPs, and documentation supporting use of proprietary BMP and proposed TSS removal rate is provided. This documentation may be in the form of the propriety BMP checklist found in Volume 2, Chapter 4 of the Massachusetts Stormwater Handbook and submitting copies of the TARP Report, STEP Report, and/or other third party studies verifying performance of the proprietary BMPs.
	A TMDL exists that indicates a need to reduce pollutants other than TSS and documentation showing that the BMPs selected are consistent with the TMDL is provided.
Sta	ndard 5: Land Uses With Higher Potential Pollutant Loads (LUHPPLs)
	The NPDES Multi-Sector General Permit covers the land use and the Stormwater Pollution Prevention Plan (SWPPP) has been included with the Stormwater Report. The NPDES Multi-Sector General Permit covers the land use and the SWPPP will be submitted <i>prior</i>
	to the discharge of stormwater to the post-construction stormwater BMPs.
	The NPDES Multi-Sector General Permit does <i>not</i> cover the land use.
	LUHPPLs are located at the site and industry specific source control and pollution prevention measures have been proposed to reduce or eliminate the exposure of LUHPPLs to rain, snow, snow melt and runoff, and been included in the long term Pollution Prevention Plan.
	All exposure has been eliminated.
	All exposure has not been eliminated and all BMPs selected are on MassDEP LUHPPL list.
	The LUHPPL has the potential to generate runoff with moderate to higher concentrations of oil and grease (e.g. all parking lots with >1000 vehicle trips per day) and the treatment train includes an oil grit separator, a filtering bioretention area, a sand filter or equivalent.
Sta	ndard 6: Critical Areas

- The discharge is near or to a critical area and the treatment train includes only BMPs that MassDEP has approved for stormwater discharges to or near that particular class of critical area.
- Critical areas and BMPs are identified in the Stormwater Report.

Standard 7: Redevelopments and Other Projects Subject to the Standards only to the maximum extent practicable

- The project is subject to the Stormwater Management Standards only to the maximum Extent Practicable as a:
 - Limited Project
 - Small Residential Projects: 5-9 single family houses or 5-9 units in a multi-family development provided there is no discharge that may potentially affect a critical area.
 - Small Residential Projects: 2-4 single family houses or 2-4 units in a multi-family development with a discharge to a critical area
 - Marina and/or boatyard provided the hull painting, service and maintenance areas are protected from exposure to rain, snow, snow melt and runoff
 - Bike Path and/or Foot Path
 - Redevelopment Project
 - Redevelopment portion of mix of new and redevelopment.
- Certain standards are not fully met (Standard No. 1, 8, 9, and 10 must always be fully met) and an explanation of why these standards are not met is contained in the Stormwater Report.
- The project involves redevelopment and a description of all measures that have been taken to improve existing conditions is provided in the Stormwater Report. The redevelopment checklist found in Volume 2 Chapter 3 of the Massachusetts Stormwater Handbook may be used to document that the proposed stormwater management system (a) complies with Standards 2, 3 and the pretreatment and structural BMP requirements of Standards 4-6 to the maximum extent practicable and (b) improves existing conditions.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control

A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan must include the following information:

- Narrative;
- Construction Period Operation and Maintenance Plan;
- Names of Persons or Entity Responsible for Plan Compliance;
- Construction Period Pollution Prevention Measures;
- Erosion and Sedimentation Control Plan Drawings;
- Detail drawings and specifications for erosion control BMPs, including sizing calculations;
- Vegetation Planning;
- Site Development Plan;
- Construction Sequencing Plan;
- Sequencing of Erosion and Sedimentation Controls;
- Operation and Maintenance of Erosion and Sedimentation Controls;
- Inspection Schedule;
- Maintenance Schedule;
- Inspection and Maintenance Log Form.
- A Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan containing the information set forth above has been included in the Stormwater Report.

Standard 8: Construction Period Pollution Prevention and Erosion and Sedimentation Control (continued)

- The project is highly complex and information is included in the Stormwater Report that explains why it is not possible to submit the Construction Period Pollution Prevention and Erosion and Sedimentation Control Plan with the application. A Construction Period Pollution Prevention and Erosion and Sedimentation Control has *not* been included in the Stormwater Report but will be submitted *before* land disturbance begins.
- The project is *not* covered by a NPDES Construction General Permit.
- The project is covered by a NPDES Construction General Permit and a copy of the SWPPP is in the Stormwater Report.
- The project is covered by a NPDES Construction General Permit but no SWPPP been submitted. The SWPPP will be submitted BEFORE land disturbance begins.

Standard 9: Operation and Maintenance Plan

- The Post Construction Operation and Maintenance Plan is included in the Stormwater Report and includes the following information:
 - Name of the stormwater management system owners;
 - Party responsible for operation and maintenance;
 - Schedule for implementation of routine and non-routine maintenance tasks;
 - Plan showing the location of all stormwater BMPs maintenance access areas;
 - Description and delineation of public safety features;
 - Estimated operation and maintenance budget; and
 - Operation and Maintenance Log Form.
- The responsible party is *not* the owner of the parcel where the BMP is located and the Stormwater Report includes the following submissions:
 - A copy of the legal instrument (deed, homeowner's association, utility trust or other legal entity) that establishes the terms of and legal responsibility for the operation and maintenance of the project site stormwater BMPs;
 - A plan and easement deed that allows site access for the legal entity to operate and maintain BMP functions.

Standard 10: Prohibition of Illicit Discharges

- The Long-Term Pollution Prevention Plan includes measures to prevent illicit discharges;
- An Illicit Discharge Compliance Statement is attached;
- NO Illicit Discharge Compliance Statement is attached but will be submitted *prior to* the discharge of any stormwater to post-construction BMPs.