

ABBREVIATED NOTICE OF RESOURCE AREA DELINEATION

Filing Under the Massachusetts Wetlands Protection Act M.G.L. Chapter 131, Section 40 and the Town of Pelham Wetlands Protection Bylaw

Tower Road Project Tower Road

Pelham, Massachusetts

Submitted to:

Pelham Conservation Commission Pelham Town Hall 351 Amherst Road Pelham, Massachusetts 01002

Filed by:

W.D. Cowls, Inc. 134 Montague Road, P.O. Box 9677 North Amherst, Massachusetts 01059

Prepared by:

TRC Companies 650 Suffolk Street Lowell, Massachusetts 01854

November 2020

November 5, 2020

Town of Pelham Conservation Commission Pelham Town Hall 351 Amherst Road Pelham, MA 01002

RE: Tower Road Project Tower Road, Pelham, MA Abbreviated Notice of Resource Area Delineation (ANRAD)

Dear Commissioners:

TRC Companies (TRC) is writing on behalf of W.D. Cowls, Inc. to file an ANRAD for a parcel off Tower Road, Pelham, MA (Site) (Figure 1 in Attachment B). The Site is comprised of approximately 63.4 acres (listed by the Pelham tax assessor as Parcel ID 14-1).

TRC conducted a wetland and waterbody delineation survey on March 23, 25, and 26, 2020. This survey resulted in an overall delineation of three wetlands and two streams. The total linear feet of wetland edge and other resource areas delineated during the wetland and waterbody survey effort for the Site, the focus of this ANRAD filing, are summarized in the following table:

Resource Area	Delineated Length (linear feet)
Bordering Vegetated Wetland	688
Bank	682
Isolated Vegetated Wetland	360

Please refer to Attachment B for survey methodology, delineated wetland descriptions, US Army Corps of Engineers Wetland Determination forms, site photographs, and figures showing the resource areas.

To assist your review, we have provided the following attachments:

- 1. Attachment A Abbreviated Notice of Resource Area Delineation Form & Wetland Fee Transmittal Form
- 2. Attachment B Wetland and Waterbody Delineation Report
- 3. Attachment C Abutter Information (Certified Abutter List)
- 4. Attachment D Figure 1: Delineated Resources Map (November 2020)

Attachment B also includes the following figures:

Figure 1 – Project Location (April 2020)

Figure 2 – Wetland Delineation (November 2020)

We very much appreciate your review of this information. If you should have any questions, please do not hesitate to contact me at 978-656-3662 or via email at <u>JBrandt@TRCcompanies.com</u>.

Sincerely,

TRC Companies

Brondt

Jeff Brandt Senior Project Manager

ATTACHMENT A Abbreviated Notice of Resource Area Delineation Form & Wetland Fee Transmittal Form

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 4A – Abbreviated Notice of Resource Area Delineation

Provided by MassDEP:

MassDEP File Number

Document Transaction Number

Pelham City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

A. General Information

1. Project Location (Note: electronic filers will click on button for GIS locator):

	Tower Road		Pelham	01002
	a. Street Address		b. City/Town	c. Zip Code
			42.36656	-72.43025
	Latitude and Longitude:		d. Latitude	e. Longitude
	14		1	
	f. Assessors Map/Plat Number		g. Parcel /Lot Numbe	er
2.	Applicant:			
	a. First Name		b. Last Name	
	W.D. Cowls, Inc.			
	c. Organization			
	P.O. Box 9677			
	d. Mailing Address			
	North Amherst		МА	01059
	e. City/Town		f. State	a. Zip Code
	336-314-1702		eturner@ariesnower	systems com
	h. Phone Number i. Fa	x Number	i. Email Address	
3.	Property owner (if different f	rom applicant):	Check if more check if more sheet with names	than one owner (attach additional and contact information)
	a. First Name		b. Last Name	
	c. Organization			
	d. Mailing Address			
	e. City/Town		f. State	g. Zip Code
	h. Phone Number i. Fa	x Number	j. Email Address	
4.	Representative (if any):			
	Jeff		Brandt	
	a. Contact Person First Name		b. Contact Person Last Na	ame
	TRC			
	c. Organization			
	650 Suffolk Street			
	d. Mailing Address			
	lowell		МΔ	01854
	e. City/Town		f. State	g. Zip Code
	978-656-3662		IBrandt@TRCcomp	anies com
	h Phone Number i Fa	x Number	i Email Address	
			j. Email Addiess	

\$2,000.00 \$987.50 \$1,012.50 a. Total Fee Paid b. State Fee Paid c. City/Town Fee Paid

filling out forms on the computer, use only the tab key to move your cursor - do not use the return key.

Important: When

Note:

Before completing this form consult your local Conservation Commission regarding any municipal bylaw or ordinance.

Fees will be calculated for

online users.

Provided by MassDEP:

MassDEP File Number

Document Transaction Number

Pelham City/Town

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 4A – Abbreviated Notice of Resource Area Delineation

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

B. Area(s) Delineated

1. Bordering Vegetated Wetland (BVW)

688 Linear Feet of Boundary Delineated

- 2. Check all methods used to delineate the Bordering Vegetated Wetland (BVW) boundary:
 - a. D MassDEP BVW Field Data Form (attached)
 - b. Other Methods for Determining the BVW boundary (attach documentation):
 - 1. \boxtimes 50% or more wetland indicator plants
 - 2. Saturated/inundated conditions exist
 - 3. Groundwater indicators
 - 4. Direct observation
 - 5. Hydric soil indicators
 - 6. Credible evidence of conditions prior to disturbance
- 3. Indicate any other resource area boundaries that are delineated:

Bank	682
a. Resource Area	b. Linear Feet Delineated
Isolated Vegetated Wetland	360
c. Resource Area	d. Linear Feet Delineated

C. Additional Information

Applicants must include the following plans with this Abbreviated Notice of Resource Area Delineation. See instructions for details. **Online Users:** Attach the Document Transaction Number (provided on your receipt page) for any of the following information you submit to the Department.

- 1. ANRAD (Delineation Plans only)
- ISGS or other map of the area (along with a narrative description, if necessary) containing sufficient information for the Conservation Commission and the Department to locate the site. (Electronic filers may omit this item.)
- 3. In Plans identifying the boundaries of the Bordering Vegetated Wetlands (BVW) (and/or other resource areas, if applicable).
- 4. 🖾 List the titles and final revision dates for all plans and other materials submitted with this Abbreviated Notice of Resource Area Delineation.

D. Fees

Massachusetts Department of Environmental Protection

Bureau of Resource Protection - Wetlands

WPA Form 4A – Abbreviated Notice of Resource Area Delineation

Provided by MassDEP:

MassDEP File Number

Document Transaction Number

Pelham City/Town

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

The fees for work proposed under each Abbreviated Notice of Resource Area Delineation must be calculated and submitted to the Conservation Commission and the Department (see Instructions and Wetland Fee Transmittal Form).

1. The Exempt: No filing fee shall be assessed for projects of any city, town, county, or district of the Commonwealth, federally recognized Indian tribe housing authority, municipal housing authority, or the Massachusetts Bay Transportation Authority.

Applicants must submit the following information (in addition to the attached Wetland Fee Transmittal Form) to confirm fee payment:

1201084	8/26/2020	
2. Municipal Check Number	3. Check date	
1201082	8/26/2020	
4. State Check Number	5. Check date	
TRC		
6. Payor name on check: First Name	7. Payor name on check: Last Name	

E. Signatures

I certify under the penalties of perjury that the foregoing Abbreviated Notice of Resource Area Delineation and accompanying plans, documents, and supporting data are true and complete to the best of my knowledge. I

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands

WPA Form 4A – Abbreviated Notice of Resource Area Delineation

Provided by MassDEP:

MassDEP File Number

Document Transaction Number

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Pelham City/Town

understand that the Conservation Commission will place notification of this Notice in a local newspaper at the expense of the applicant in accordance with the wetlands regulations, 310 CMR 10.05(5)(a).

I further certify under penalties of perjury that all abutters were notified of this application, pursuant to the requirements of M.G.L. c. 131, § 40. Notice must be made in writing by hand delivery or certified mail (return receipt requested) to all abutters within 100 feet of the property line of the project location.

I hereby grant permission, to the Agent or member of the Conservation Commission and the Department of Environmental Protection, to enter and inspect the area subject to this Notice at reasonable hours to evaluate the wetland resource boundaries subject to this Notice, and to require the submittal of any data deemed necessary by the Conservation Commission or Department for that evaluation.

I acknowledge that failure to comply with these certification requirements is grounds for the Conservation Commission or the Department to take enforcement action.

1. Signature of Applicant

3. Signature of Property Owner (if different)

5. Signature of Representative (if any)

4. Date

6. Date

2. Date

For Conservation Commission:

Two copies of the completed Abbreviated Notice of Resource Area Delineation (Form 4A), including supporting plans and documents; two copies of the ANRAD Wetland Fee Transmittal Form; and the city/town fee payment must be sent to the Conservation Commission by certified mail or hand delivery.

For MassDEP:

One copy of the completed Abbreviated Notice of Resource Area Delineation (Form 4A), including supporting plans and documents; one copy of the ANRAD Wetland Fee Transmittal Form; and a copy of the state fee payment must be sent to the MassDEP Regional Office (see Instructions) by certified mail or hand delivery. (E-filers may submit these electronically.)

The original and copies must be sent simultaneously. Failure by the applicant to send copies in a timely manner may result in dismissal of the Notice of Intent.

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands **ANRAD Wetland Fee Transmittal Form**

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

Important: When filling out forms on the computer, use only the tab key to move your cursor do not use the return key.

A. Applicant Information

1. Location of Project:

Tower Road	Pelham
a. Street Address	b. City/Town
\$987.50	1195225
c. Fee amount	d. Check number
2. Applicant:	
	WD Cowla Inc

		W.D. Co	wls, Inc.
a. First Name	b. Last Name	c. Company	
P.O. Box 9677			
d. Mailing Address			
North Amherst		MA	01059
e. City/Town		f. State	g. Zip Code
336-314-1702			
h. Phone Number			

3. Property Owner (if different):

a. First Name	b. Last Name	c. Company	
d. Mailing Address			
e. City/Town		f. State	g. Zip Code
h. Phone Number			

B. Fees

The fee is calculated as follows for each Resource Area Delineation included in the ANRAD (check applicable project type). The maximum fee for each ANRAD, regardless of the number of Resource Area Delineations, is \$200 activities associated with a single-family house and \$2,000 for any other activity.

Bordering Vegetated Wetland Delineation Fee:

Online users: check box if fee exempt.	1. 🛄 2. 🔀	single family house project all other projects	a. feet of BVW 688 a. feet of BVW	x \$2.00 = \$1,376 x \$2.00 =	b. Fee for BVW \$1,376 b. Fee for BVW
	Other	Resource Area (e.	.g., bank, riverfront a	rea, etc.):	
	3.	single family house project	a. linear feet	x \$2.00 =	b. Fee
	4. 🖂	all other	1,042	\$2,084	\$624 (max. fee reached)
		projects	a. linear feet	x \$2.00 =	b. Fee
			Total Fee	e for all Resource Areas:	\$2,000 Fee
				State share of filing fee:	\$987.50 5. 1/2 of total fee less \$12.50
			City	Town share of filing fee:	\$1,012.50 6. 1/2 of total fee plus \$12.50

Massachusetts Department of Environmental Protection Bureau of Resource Protection - Wetlands ANRAD Wetland Fee Transmittal Form

Massachusetts Wetlands Protection Act M.G.L. c. 131, §40

C. Submittal Requirements

a.) Send a copy of this form, with a check or money order for the state share of the fee, payable to the Commonwealth of Massachusetts, to:

Department of Environmental Protection Box 4062 Boston, MA 02211

- b.) **To the Conservation Commission:** Send the Abbreviated Notice of Resource Area Delineation; a **copy** of this form; and the city/town fee payment.
- c.) **To DEP Regional Office**: Send one copy of the Abbreviated Notice of Resource Area Delineation (and any additional documentation required as part of a Simplified Review Buffer Zone Project); a **copy** of this form; and a **copy** of the state fee payment. (E-filers of Notices of Intent may submit these electronically.)

ATTACHMENT B Wetland and Waterbody Delineation Report

Tower Road Project

Tower Road Pelham, Massachusetts

Prepared By:

TRC Wannalancit Mills 650 Suffolk Street Lowell, Massachusetts 01854

Wetland and Waterbody Delineation Report

November 2020

TABLE OF CONTENTS

1.0	INTRODUCTION1			
2.0	REGU	LATOR	YAUTHORITY	1
	2.1	1 United States Army Corps of Engineers1		
	2.2	Massa	chusetts Department of Environmental Protection	2
	2.3	Town c	of Pelham Conservation Commission	3
3.0	PROJ	ECT SIT	E CHARACTERISTICS	3
	3.1	Hydrolo	ogy	3
		3.1.1	Floodplains	4
	3.2	Federa	I and State Mapped Wetlands and Streams	4
	3.3	Mappe	d Soils	4
		3.3.1	Hydric Rating	5
		3.3.2	Natural Drainage Class	5
		3.3.3	Prime Farmland	6
		3.3.4	Hydrologic Soil Groups	6
4.0	WETL	AND AN	D STREAM DELINEATION METHODOLOGY	7
	4.1	Non-we	etland Aquatic Resource Methodology	7
	4.2	Wetlan	d Delineation Methodologies	7
		4.2.1	Hydrophytic Vegetation Methodologies	7
		4.2.2	Hydric Soil Methodologies	8
		4.2.3	Wetland Hydrology Methodologies	9
5.0	RESU	LTS		9
	5.1	Upland	Areas	9
	5.2	Delinea	ated Wetlands and Waterbodies	9
		5.2.1	Delineated Wetlands	9
		5.2.2	Delineated Waterbodies1	0
6.0	CONC	LUSION	S1	1
7.0	REFE	RENCES	6 1	2

TABLES

Table 1: Mapped Soils	5
Table 2. Delineated Wetlands and Waterbodies	11

APPENDICES

- Appendix A Figures
 - Figure 1. Project Location
 - Figure 2. Delineated Resources Map
- Appendix B Photographs
- Appendix C Wetland Determination Data Forms
- Appendix D NRCS Soil Report
- Appendix E USGS StreamStats Report

1.0 Introduction

This report presents the results of a wetland and waterbody delineation conducted on March 23 and 25, 2020 by TRC Companies, Inc. (TRC) off Tower Road in the Town of Pelham, Hampshire County, Massachusetts (Site). The survey included the 63.4-acre parcel listed by the Pelham Tax Assessor as Parcel ID 14-1.

The survey for wetlands and streams focused on the entire Site as well as adjacent parcels, when accessible, within 200 feet.

This report documents wetlands, streams, and other aquatic resources (ponds, lakes, impoundments, etc.) at the Site regardless of assumed jurisdictional status and addresses the implementation of local and state regulated buffer areas. To the extent practicable, the delineated resources were investigated to determine drainage patterns and a physical nexus to Waters of the United States (WOUS).

Appendix A provides a Site location map (Figure 1) and a map of the resources delineated by TRC (Figure 2). Appendix B includes representative photographs of the Site, Appendix C includes wetland determination data forms, and Appendix D contains the Natural Resources Conservation Service (NRCS) Soil Report. Appendix E contains the U.S. Geological Survey (USGS) StreamStats Reports.

2.0 Regulatory Authority

2.1 United States Army Corps of Engineers

In accordance with Section 404 of the Clean Water Act (CWA), the United States Army Corps of Engineers (USACE) asserts jurisdiction over WOUS, defined as wetlands, streams, and other aquatic resources under the regulatory authority per Title 33 Code of Federal Regulations (CFR) Part 328, and the United States Environmental Protection Agency (EPA) per Title 40 CFR Part 230.3(s). Wetlands are defined as "those areas that are inundated or saturated by surface or ground water at a frequency and duration sufficient to support, and that under normal circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions" (EPA, 2019).

The USACE will assert jurisdiction over the following waters:

- Traditional navigable waters;
- Wetlands adjacent to traditional navigable waters;
- Non-navigable tributaries of traditional navigable waters that are relatively permanent where the tributaries typically flow year-round or have continuous flow at least seasonally (e.g., typically three months); and
- Wetlands that directly abut such tributaries.

The USACE will decide jurisdiction over the following waters based on analysis to determine whether they have significant nexus with a traditional navigable water:

- Non-navigable tributaries that are not relatively permanent;
- Wetlands adjacent to non-navigable tributaries that are not relatively permanent; and
- Wetlands adjacent to, but that do not directly abut, a relatively permanent non-navigable tributary.

The USACE generally will not assert jurisdiction over the following features:

- Swales or erosional features (e.g., gullies, small washes characterized by low volume, infrequent, or short duration flow); and
- Ditches (including roadside ditches) excavated wholly in and draining only uplands, and that do not carry a relatively permanent flow of water.

The USACE will apply the significant nexus standard as follows:

- A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by all wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of downstream traditional navigable waters; and
- Significant nexus includes consideration of hydrologic and ecologic factors.

The USACE also regulates navigable waters under Section 10 of the Rivers and Harbor Act (33 U.S.C. 401 et seq.), which requires that a permit must be issued by the USACE to construct any structure in or over any navigable WOUS, as well as any proposed action (such as excavation/dredging or deposition of materials) that would alter or disturb these waters. If the proposed structure or activity affects the course, location, condition, or capacity of the navigable water, even if the proposed activity is outside the boundaries of the stream in associated wetlands, a Section 10 permit from the USACE is required.

2.2 Massachusetts Department of Environmental Protection

The Massachusetts Wetlands Protection Act (WPA) (Section 40 of Chapter 131 of the General Laws of Massachusetts and regulated under 310 Code of Massachusetts Regulations [CMR] section 10.00) defines multiple coastal (310 CMR 10.25-10.37) and inland resource areas (310 CMR 10.54-10.59) and gives the Massachusetts Department of Environmental Protection (MassDEP) jurisdiction over these resource areas. In most cases, the WPA also gives MassDEP jurisdiction over buffer zone extending 100 feet from the edge of the resource area. In addition to MassDEP, local municipalities' Conservation Commissions are responsible for administering the WPA and any local wetlands ordinance or bylaw.

The WPA defines two types of Land Subject to Flooding (310 CMR 10.57): isolated and bordering. Isolated Land Subject to Flooding (ILSF) is defined as "an isolated depression or a closed basin which serves as a ponding area for run-off or high ground water which has risen above the ground surface." Bordering Land Subject to Flooding (BLSF) is defined as "an area with low, flat topography adjacent to and inundated by flood waters rising from creeks, rivers, streams, ponds or lakes. It extends from the banks of these waterways and water bodies; where a bordering vegetated wetland occurs, it extends from said wetland." The boundary of BLSF is further defined as "the estimated maximum lateral extent of flood water which will theoretically result from the statistical 100-year frequency storm" as shown on the most recently available flood profile data prepared for the community by the National Flood Insurance Program (NFIP), currently administered by the Federal Emergency Management Agency (FEMA), successor to the U.S. Department of Housing and Urban Development). Under the WPA, ILSF and BLSF do not have associated buffer zones.

The WPA defines Bordering Vegetated Wetland (BVW) under 310 CMR 10.55 as any freshwater wetland which borders on creeks, rivers, stream ponds or lakes. Under the WPA, a 100-foot buffer zone is associated with BVWs. Isolated wetlands (IWs) are not connected to a waterway or waterbody and, therefore, are not regulated under the WPA and do not have an associated buffer zone under the WPA. IWs may have an associated buffer zone or similar zone associated with them under the local ordinance or bylaw. In some cases, IWs may qualify as ILSF and, in those instances, are regulated under the WPA.

The WPA defines Bank (310 CMR 10.54) as the portion of the land surface which normally abuts and confines a waterbody, occurring between a waterbody and a BVW and adjacent floodplain, or between a waterbody and an upland. Under the WPA, a 100-foot buffer zone is associated with Banks.

The WPA defines Riverfront Area (310 CMR 10.58) as the 200-foot area of land measured horizontally from a river's Mean Annual High Water (MAHW) line. The section defines a river as any stream that is perennial and includes, but is not limited to, streams shown as perennial on current USGS maps or that have a watershed size greater than or equal to one square mile. Riverfront Area is not associated with intermittent streams as they do not flow throughout the year. Under the WPA, Riverfront Area does not have an associated buffer zone.

A Notice of Intent filing is required from the MassDEP for any disturbance, including the removal of vegetation or alteration to a Banks, BVW, ILSF, BLSF, Riverfront Area, or buffer zone.

2.3 Town of Pelham Conservation Commission

The Pelham Conservation Commission (PCC) administers a local wetlands bylaw and regulations in addition to the WPA. The PCC has jurisdiction over any freshwater wetland, marsh, wet meadow, bog, swamp, isolated wetland, lake, pond, river, and stream (surface or subsurface) and land within 100 feet of any of these areas. The PCC does not have a minimum size for isolated wetlands. The PCC also has jurisdiction over land under waterbodies and land subject to flooding or inundation by groundwater, surface water, storm flowage, or within 100 feet of the 100-year floodplain.

3.0 **Project Site Characteristics**

TRC reviewed publicly available literature and materials used for the investigation, survey, and report preparation, including:

- MassGIS OLIVER¹, the National Hydrography Dataset;
- The Belchertown, Massachusetts 7.5 Minute Quadrangle (USGS, 2018);
- The FEMA Flood Insurance Rate Map (FIRM) Panel 250168A (effective date December 10, 1976);
- The U.S. Fish and Wildlife Service (USFWS), National Wetlands Inventory (NWI);
- The U.S. Department of Agriculture (USDA), NRCS Web Soil Survey;
- Recent aerial orthoimagery.

The following sections summarize TRC's review of each of these resources.

3.1 Hydrology

The Site is gently sloping with some steep slopes in the southeastern portion. The Site generally drains westward beyond the survey area to wetlands and tributaries to Harris Brook to the northwest and to Scarboro Pond to the south.

¹ The MassDEP Wetlands Conservancy Program uses aerial photography and photo interpretation to delineate and map wetland boundaries. These boundaries are available via the Massachusetts Office of Geographic Information (MassGIS) online mapping tool, OLIVER. Desktop review consisted of utilizing MassGIS OLIVER to gather a general understanding of existing conditions and potential regulated resource areas.

3.1.1 Floodplains

Flood hazard areas identified on the FEMA's FIRMs are identified as Special Flood Hazard Areas (SFHAs). SFHAs are defined as the area that will be inundated by the flood event having a 1-percent chance of being equaled or exceeded in any given year. The 1-percent annual chance flood is also referred to as the base flood or 100-year flood. FEMA uses a variety of labels for SFHAs:

Zone A	Zone A99	Zone AR/A
Zone AO	Zone AR	Zone V
Zone AH	Zone AR/AE	Zone VE, and
Zones A1-A30	Zone AR/AO	Zones V1-V30
Zone AE	Zone AR/A1-A30	

Moderate flood hazard areas, labeled Zone B or Zone X (shaded on FEMA mapping) are also shown on the FIRM, and are the areas between the limits of the base flood and the 0.2-percent-annual-chance (or 500-year) flood. The areas of minimal flood hazard, which are the areas outside the SFHA and higher than the elevation of the 0.2-percent-annual-chance flood, are labeled Zone C or Zone X (unshaded on FEMA mapping).

According to the FEMA FIRM 250168A (effective date December 10, 1976), the Site is located within a Zone C area of minimal flood disturbance zone. Base flood elevations and flood hazard factors are not available for this area.

3.2 Federal and State Mapped Wetlands and Streams

The USFWS is the principal federal agency tasked with providing information to the public on the status and trends of wetlands on a national scale. The USFWS NWI is a publicly available resource that provides detailed information on the abundance, characteristics, and distribution of nationwide wetlands (where mapped). NWI mapping data is offered to promote the understanding, conservation, and restoration of wetlands. The online MassGIS OLIVER mapping tool was accessed to determine the extent of state-mapped aquatic resources.

According to TRC's review of MassGIS OLIVER mapping, NWI does not map any wetlands onsite and MassDEP maps one wetland and one stream onsite. The MassDEP wetland is located along the northwest boundary of the Site. The MassDEP stream is an unnamed intermittent stream along the center of the western Site boundary.

3.3 Mapped Soils

The NRCS's Web Soil Survey identifies six soil map units within the Site. Map units can represent a type of soil, a combination of soils, or miscellaneous land cover types (e.g., water, rock outcrop, developed impervious surface). Map units are usually named for the predominant soil series or land types within the map unit. A summary of soil characteristics for soils mapped at the Site are included in Table 1, below. The following sections provide details about hydric ratings, drainage class, prime farmland, and hydrologic soil groups (HSGs). Details about soil map unit descriptions are provided in the NRCS Soil Report included as Appendix D.

					1
Symbol	Soil Name	Hydric Rating (%)	Drainage Class	Hydrologic Soil Group	Farmland Classification
316B	Scituate fine sandy loam, 3 to 8 percent slopes, very stony	4	Moderately well drained	C/D	Farmland of statewide importance
441B	Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, very stony	2	Somewhat excessively drained	A	Farmland of statewide importance
441C	Gloucester gravelly fine sandy loam, 8 to 15 percent slopes, very stony	1	Somewhat excessively drained	A	Farmland of statewide importance
442B	Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, extremely stony	3	Somewhat excessively drained	A	Not prime farmland
442C	Gloucester gravelly fine sandy loam, 8 to 15 percent slopes, extremely stony	1	Somewhat excessively drained	A	Not prime farmland
442D	Gloucester gravelly fine sandy loam, 15 to 25 percent slopes, extremely stony	0	Somewhat excessively drained	А	Not prime farmland

3.3.1 Hydric Rating

The *Corps of Engineers Wetlands Delineation Manual* (Environmental Laboratory, 1987) (1987 Manual) defines a hydric soil as "...a soil that in its undrained condition, is saturated, flooded or ponded long enough during the growing season to develop anaerobic conditions that favor the growth and regeneration of hydrophytic vegetation."

Due to limitations imposed by the small scale of the soil survey mapping, it is not uncommon to identify wetlands within areas not mapped as hydric soil while areas mapped as hydric often do not support wetlands. This concept is emphasized by the NRCS:

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Hydric Soil Rating (HSR) indicates the percentage of a map unit that meets the criteria for hydric soils.

Map unit 316B has an HSR of 4 percent, map unit 442B has an HSR of 3 percent, map unit 441B has an HSR of 2 percent, map units 441C and 442C have an HSR of 1 percent, and map unit 442D has an HSR of 0 percent. For map units 316B, 442B, 441B, 441C, and 442C, the hydric component within these map units is Ridgebury.

3.3.2 Natural Drainage Class

Natural drainage class refers to the frequency and duration of wet periods under conditions similar to those under which the soil developed. Anthropogenic alteration of the water regime, either through drainage or

irrigation, is not a consideration unless the alterations have significantly changed the morphology of the soil.

Map unit 316B is rated as moderately well drained. is the remaining map units (441B, 441C, 442B, 442C, and 442D) are rated as somewhat excessively drained.

3.3.3 Prime Farmland

Prime farmland is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops, and is available for these uses (the land could be cropland, pastureland, rangeland, forestland, or other land, but not urban built-up land or water). Land used for a specific high-value food or fiber crop is classified as "unique farmland." Generally, additional "farmlands of statewide importance" include those that are nearly prime farmland and that economically produce high yields of crops when treated and managed according to acceptable farming methods. In some local areas, there is concern for certain additional farmlands, even though these lands are not identified as having national or statewide importance. These farmlands are identified as being of "local importance" through ordinances adopted by local government. The NRCS State Conservationist reviews and certifies lists of farmland of state and local importance. These lists, along with state and locally established Land Evaluation and Site Assessment (LESA) systems where applicable, are used by federal agencies to review and evaluate activities that may impact farmland. As defined in 7 CFR Part 657, important farmland encompasses prime and unique farmland, as well as farmland of statewide and local importance.

According to the NRCS, map units 316B, 441B, and 441C are classified as "farmland of statewide importance" and map units 442B, 442C, and 442D are classified as "not prime farmland."

3.3.4 Hydrologic Soil Groups

Soils are assigned to a HSG based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A: Soils have a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B: Soils have a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C: Soils have a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D: Soils have a very slow infiltration rate (high runoff potential) when thoroughly wet. Soils consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition in Group D are assigned to dual classes.

Map unit 316B is in the dual HSG C/D. Map units 441B, 441C, 442B, 442C, and 442D are in HSG A.

4.0 Wetland and Stream Delineation Methodology

In addition to the desktop review described in Section 3.0, TRC biologists performed field investigations at the Site to identify wetlands, waterbodies, and other surface waters on March 23 and 25, 2020.

4.1 Non-wetland Aquatic Resource Methodology

Streams and other non-wetland aquatic features within the Site were identified by the presence of an OHWM, which is the line established by the fluctuations of water (33 CFR 328.3). The OHWM line is indicated by physical characteristics, which can include: a clear, natural line impressed on the bank; shelving; changes in the character of soil; destruction of terrestrial vegetation; the presence of litter and debris; or other characteristics of the surrounding areas. Each stream bank was delineated with blue flagging. Flags were located with a handheld global positioning system (GPS) unit and the data post-processed to achieve sub-meter accuracy.

4.2 Wetland Delineation Methodologies

The delineation of wetlands was conducted in accordance with criteria set forth in the 1987 Manual, the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0)* (USACE, 2012) (Supplement), and the *Delineating Bordering Vegetated Wetlands Under the Massachusetts Wetlands Protection Act- A Handbook* (MassDEP, 1995) (the MassDEP Handbook).

The three-parameter approach to identify and delineate wetlands presented in the 1987 Manual and the Supplement requires that, except for atypical and disturbed situations, wetlands possess hydrophytic vegetation, hydric soils, and wetland hydrology. A two-parameter approach that considers only vegetation and hydrology indicators is presented in the MassDEP Handbook. Per the MassDEP Handbook, hydric soil is included as evidence of wetland hydrology.

Wetland boundary flags were located with a handheld GPS unit and the data were post-processed to achieve sub-meter accuracy. Delineated resources were classified in accordance with the system presented in *The Classification of Wetlands and Deepwater Habitats of the United States, Second Edition* (Federal Geographic Data Committee, 2013).

4.2.1 Hydrophytic Vegetation Methodologies

Hydrophytic vegetation is defined in the 1987 Manual as:

...the sum total of macrophytic plant life that occurs in areas where the frequency and duration of inundation or soil saturation produce permanently or periodically saturated soils of sufficient duration to exert a controlling influence on the plant species present.

Plants are categorized according to their occurrence in wetlands. Scientific names and wetland indicator statuses for vegetation are those listed in *The National Wetland Plant List: 2016 Wetland Ratings* (NWPL) (Lichvar et al., 2016). The indicator statuses specific to the "Northcentral and Northeast Region" as defined by the USACE apply to the Site. For upland species that are not listed on the NWPL, the Integrated

Taxonomic Information System was referenced for currently accepted scientific names. The official short definitions for wetland indicator statuses are as follows:

- Obligate Wetland (OBL): Almost always occur in wetlands;
- Facultative Wetland (FACW): Usually occur in wetlands, but may occur in non-wetlands;
- Facultative (FAC): Occur in wetlands and non-wetlands (50/50 mix);
- Facultative Upland (FACU): Usually occur in non-wetlands, but may occur in wetlands; and
- Upland (UPL): Almost never occur in wetlands.

Plants that are not found in a region, but are found in an adjacent region, take on the indicator status of that adjacent region for dominance calculations. Plants that are included on the NWPL, but not within the Site region or an adjacent region, are not included in dominance calculations. Plants that are not found in wetlands in any region are considered "UPL" for dominance calculations.

Vegetation community sampling was accomplished using the methodologies outlined in the 2012 Supplement. The "50/20 rule" was applied to determine whether a species was dominant in its stratum. In using the 50/20 rule, the plants that comprise each stratum are ranked from highest to lowest in percent cover. The species that cumulatively equal or exceed 50 percent of the total percent cover for each stratum are dominant species, and any additional species that individually provides 20 percent or more percent cover is also considered dominant species of its respective strata.

A hydrophytic vegetation community is present when: 1) all of the dominant species are FACW and/or OBL (Rapid Test for Hydrophytic Vegetation); 2) greater than 50 percent of the dominant species' (as determined by the 50/20 rule) indicator statuses are FAC, FACW, or OBL (Dominance Test); and/or 3) when the calculated Prevalence Index is equal to or less than 3.0. When applying the Prevalence Index, all plants are assigned a numeric value based on indicator status (OBL = 1, FACW = 2, FAC = 3, FACU = 4, and UPL = 5) and their abundance (absolute percent cover) is used to calculate the prevalence index.

Cover types are also assigned to each wetland and waterbody in accordance with the system presented in *The Classification of Wetlands and Deepwater Habitats of the United States, Second Edition* (Federal Geographic Data Committee, 2013).

4.2.2 Hydric Soil Methodologies

Hydric soil indicators described in *Field Indicators for Identifying Hydric Soils in New England, Version 4* (New England Hydric Soils Technical Committee, 2017) and in *Field Indicators of Hydric Soils in the United States, Version 8.2* (NRCS, 2018) were used to determine the presence of characteristic soil morphologies resulting from prolonged saturation and/or inundation. Soil color was described using standard color notations provided on Munsell® soil color charts (X-Rite, Inc., 2015). Soil texture was determined using the methods described by Thien (1979). Soil test pits were dug using a spade shovel to a depth of approximately 20 inches or more (if needed).

Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin (MLRA Handbook) (USDA NRCS, 2006) was referenced to determine the hydric soil indicators that apply to the Site. Per the MLRA Handbook, the Site is within Major Land Resource Area (MLRA) 144A (New England and Eastern New York Upland, Southern Part) of Land Resource Region (LRR) R (Northeastern Forage and Forest Region). Hydric soil indicators that do not apply to this MLRA were not considered on the wetland determination data forms.

The presence or absence of hydric soils was determined through examination of samples extracted with a hand shovel or hand auger from the upper horizons of the soil profile. Soils were examined to depths of approximately 18 to 20 inches, unless restrictive layers such as hard pan, rock, densely packed fill materials, etc. were encountered at shallower depths.

4.2.3 Wetland Hydrology Methodologies

Per the 1987 Manual:

The term "wetland hydrology" encompasses all hydrologic characteristics of areas that are periodically inundated or have soils saturated to the surface at some time during the growing season. Areas with evident characteristics of wetland hydrology are those where the presence of water has an overriding influence on characteristics of vegetation and soils due to anaerobic and reducing conditions, respectively. Such characteristics are usually present in areas that are inundated or have soils that are saturated to the surface for sufficient duration to develop hydric soils and support vegetation typically adapted for life in periodically anaerobic soil conditions. Hydrology is often the least exact of the parameters, and indicators of wetland hydrology are sometimes difficult to find in the field. However, it is essential to establish that a wetland area is periodically inundated or has saturated soils during the growing season. (Environmental Laboratory, 1987)

Wetland hydrology indicators are grouped into 18 primary and 11 secondary indicators presented in the Supplement. The USACE considers wetland hydrology to be present when at least one primary indicator or two secondary indicators are identified.

5.0 Results

5.1 Upland Areas

The upland areas consist of successional forests throughout most the Site. The dominant vegetation in the uplands consists of eastern hemlock (*Tsuga canadensis*), northern red oak (*Quercus rubra*), red maple (*Acer rubrum*), yellow birch (*Betula allegheniensis*), eastern white pine (*Pinus strobus*), mountain laurel (*Kalmia latifolia*), late lowbush blueberry (*Vaccinium angustifolium*), cinnamon fern (*Osmundastrum cinnamomeum*), tree groundpine (*Dendrolycopodium dendroideum*), and partridgeberry (*Mitchella repens*). The terrain of the Site is gently sloping to the northwest. The soils observed throughout upland portions of the Site were generally classified as silt loam or loamy sand.

5.2 Delineated Wetlands and Waterbodies

TRC identified three wetlands and two waterbodies within the Site during the March 2020 resource delineation effort (Figure 2 in Appendix A). Delineated areas are described in the following sections and summarized at the end of this section in Table 2. Refer to the photographs in Appendix B and the wetland determination data forms in Appendix C for further details about each delineated area.

5.2.1 Delineated Wetlands

Wetland W-1 is a palustrine forested (PFO) wetland associated with stream S-1. This wetland is located along the northern edge of the Site and extends off-site to the north and west. The dominant vegetation included yellow birch, green ash (*Fraxinus pennsylvanica*), red maple, and threeleaf goldthread (*Coptis trifolia*). Indicators of wetland hydrology included high water table, saturation, drainage patterns, moss trim lines, microtopic relief and FAC-neutral test. Soils were composed of a thick layer of dark organic muck

underlain by sandy loam. This soil meets Hydric Soil Indicator A11 as described in *Field Indicators of Hydric* Soils in the United States, Version 8.2 (Field Indicators) (USDA NRCS, 2018). This wetland is PCC and MassDEP jurisdictional and it also falls under USACE jurisdiction, as it is likely connected to other WOUS.

Wetland W-2 is an isolated PFO wetland. This wetland is located along the western Site boundary and extends off-site to the west. The dominant vegetation included red maple, cinnamon fern, and sphagnum moss (*Sphagnum spp.*).. Indicators of wetland hydrology included surface water, saturation, water-stained leaves, drainage patterns, geomorphic position, microtopographic relief, and FAC-neutral test. Soils were composed of a layer of hemic muck over dark gray silt loam. This soil meets Hydric Soil Indicator A11 as described in *Field Indicators of Hydric Soils in the United States, Version 8.2* (Field Indicators) (USDA NRCS, 2018. This wetland has a delineated area of 7,582 square feet. Based on the vegetation and soil conditions, this wetland may be inundated during non-drought conditions. A standing water depth of between 15 and 18 inches would result in the ¼ acre-feet volume required to meet the ILSF definition at 310 CMR 10.57(2)(b)(1). *This wetland is PCC jurisdictional as an isolated wetland and may be MassDEP jurisdictional as ILSF. It likely does not fall under USACE jurisdiction, as it is not connected to other WOUS.*

Wetland W-3 is a PFO wetland associated with S-2. This wetland is located along the western edge of the Site. The dominant vegetation included red maple, eastern white pine, yellow birch, mountain laurel, and sphagnum moss. Indicators of wetland hydrology included surface water, high water table, saturation, water-stained leaves, drainage patterns, moss trim lines, and geomorphic position. Soils were composed of a layer of dark sapric muck over dark gray loamy sand on top of rock. This soil meets Hydric Soil Indicator A11 as described in *Field Indicators of Hydric Soils in the United States, Version 8.2* (Field Indicators) (USDA NRCS, 2018). *This wetland is PCC and MassDEP jurisdictional and it also falls under USACE jurisdiction, as it is likely connected to other WOUS.*

5.2.2 Delineated Waterbodies

Stream S-1 is an intermittent stream (R4, NWI classification) that flows westward immediately north of the northern boundary of the Site. This stream continues westward off-site. The streambed was comprised of organic material. TRC observed an average width of approximately 10 feet. Stream S-1 has defined banks such that the OHWM and the banks are coincident. The OHWM was delineated on both sides of the stream.

The USGS does not map stream S-1. The USGS StreamStats analysis in Appendix E shows that it has a watershed that is less than 0.5 square miles. Therefore, this stream is considered intermittent. *This stream is PCC and MassDEP jurisdictional and falls under USACE jurisdiction, as it is likely connected to other WOUS.*

Stream S-2 is an intermittent stream (R4) that flows westward toward the center of the west Site boundary. This stream extends off-site to the west. The streambed was comprised of sand and gravel. TRC observed an average width of approximately 10 feet. Stream S-2 has defined banks such that the OHWM and the banks are coincident. The OHWM was delineated on one side of the stream.

The USGS does not map stream S-2. The USGS StreamStats analysis in Appendix E shows that it has a watershed that is less than 0.5 square miles. Therefore, this stream is considered intermittent. *This stream is PCC and MassDEP jurisdictional and falls under USACE jurisdiction, as it is likely connected to other WOUS.*

Wetland Field Designation	Field Designated NWI Classification ¹	Assumed Jurisdictional Status	Assumed Buffer/ Setback Requirements	
W-1	PFO	USACE/MassDEP/Local	100-ft buffer zone	
W-2	PFO	MassDEP/Local	100-ft buffer zone	
W-3	PFO	USACE/MassDEP/Local	100-ft buffer zone	
S-1	R4	USACE/MassDEP/Local	100-ft buffer zone	
S-2	R4	USACE/MassDEP/Local	200-ft Riverfront Area	
¹ The Classification of Wetlands and Deepwater Habitats of the United States, Second Edition (Federal Geographic Data Committee, 2013). Categories include: Palustrine Forested (PFO), and Riverine Intermittent				

Table 2. Delineated Wetlands and Waterbodies

(R4).

6.0 Conclusions

It is TRC's opinion that delineated wetlands W-1 and W-3 are BVWs regulated by the PCC and MassDEP and are also likely under USACE jurisdiction. W-2 is an isolated wetland regulated by the PCC and may be regulated as ILSF by MassDEP. W-2 likely does not fall under USACE jurisdiction. There are no buffers or setbacks associated with USACE-regulated wetlands. However, there is a 100-foot buffer zone associated with MassDEP- and PCC-regulated wetlands.

Intermittent streams S-1 and S-2 are USACE jurisdictional, as they are hydrologically connected to WOUS. There streams are also regulated by the PCC and MassDEP, as they flow within, into, or out of a MassDEP-regulated wetland resource area.

Final determination of jurisdictional status for on-site wetlands and waterbodies must be made by the regulators.

7.0 References

- Environmental Laboratory. 1987. *Corps of Engineers Wetland Delineation Manual*. Technical Report Y-87-1. U.S. Army Corps of Engineers: Waterways Experiment Station; Vicksburg, MS.
- Environmental Protection Agency (EPA). 2019. *Electronic Code of Federal Regulations*. Title 40, Chapter 1, Subchapter H, Part 230, Subpart A, Section 230.3. <u>https://www.ecfr.gov/cgi-bin/text-idx?SID=c2ac4e35564a7e132276a5092222dded&mc=true&node=se40.27.230_13&rgn=div8</u>. Accessed August 2020.
- Federal Geographic Data Committee. 2013. *Classification of wetlands and deepwater habitats of the United States*. FGDC-STD-004-2013. Second Edition. Wetlands Subcommittee, Federal Geographic Data Committee and U.S. Fish and Wildlife Service, Washington, DC.
- Lichvar, R.W., D.L. Banks, W.N. Kirchner, and N.C. Melvin. 2016. *The National Wetland Plant List*: 2016 wetland ratings. Phytoneuron 2016-30: 1-17. Published 28 April 2016. ISSN 2153 733X.
- MassDEP. 1995. *Delineating Bordering Vegetated Wetlands Under the Massachusetts Wetland Protection Act.* Publication No. 17668-1022000-2/95-2.75-C.R. Massachusetts Department of Environmental Protection, Division of Wetlands and Waterways. Boston, MA. Scott Jackson, author.
- New England Hydric Soils Technical Committee. 2017. Version 4, Field Indicators for Identifying Hydric Soils in New England. New England Interstate Water Pollution Control Commission, Lowell, MA.
- U.S. Army Corps of Engineers (USACE). 2012. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0). U.S. Army Engineer Research and Development Center, Vicksburg, MS, 162 pp.
- USDA NRCS. Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/. Accessed August 2020.
- USDA NRCS. 2018. *Field Indicators of Hydric Soils in the United States, Version 8.2* L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz (eds.). USDA, NRCS, in cooperation with the National Technical Committee for Hydric Soils.
- USDA NRCS. 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. USDA Handbook 296.
- U.S. Department of the Interior, Geological Survey (USGS). 2018. Blechertown, Massachusetts Quadrangle. 7.5 Minute Series (Topographic).

Appendix A: Figures

S:\1-PROJECTS\AMP\387920_TowerHill\5-MXD\Fig 2 TowerHill_Delineation11x17_20201105.mxd

Appendix B: Photographs

Appendix B Page 1

Appendix C: Wetland Determination Data Forms

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Tower Hill	r HillCity/County:_ Pelham, Hampshire			SamplingDate: 2020-Mar-25				
Applicant/Owner: Cowls W.D., Inc.			State: MA		SamplingPoint: UPL-1			
Investigator(s): Kevin Ferguson, Greg Russo			Section, Township, Range: NA					
Landform (hillslope, ter	race, etc.):	Depression		Local relie	f (concave, convex,	none):	Concave	Slope (%): 1 to 3
Subregion (LRR or MLRA): LRR R		Lat	42.3678783524	Long:	-72.429040086	Datum: WGS84		
Soil Map Unit Name: Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, very stony				NWI classificatio	on: None			
Are climatic/hydrologic conditions on the site typical for this time of year? Yes 🖌 No (If no, explain in Remarks.)								
Are Vegetation,	Soil, c	or Hydrology	significant	ly disturbed?	Are "Normal C	ircumst	ances" present?	Yes 🟒 No
Are Vegetation,	Soil,	or Hydrology	naturally p	problematic?	(If needed, exp	olain an <u>y</u>	y answers in Remarks	i.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🟒 No							
Hydric Soil Present?	Yes No 🟒	Is the Sampled Area within a Wetland?	Yes No 🟒					
Wetland Hydrology Present?	Yes 🟒 No	If yes, optional Wetland Site ID:						
Remarks: (Explain alternative procedures here or in a separate report)								
Covertype is UPL. Area is upland, not all three wetland parameters are present.								

HYDROLOGY

Wetland Hydrology Indicators:				
Primary Indicators (minimum of o	ne is required; check all th	Secondary Indicators (minimum of two required)		
			 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Im 	nagery (C9)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Im Sparsely Vegetated Concave Statement 	Presend Recent Thin Mu Jagery (B7) Other (J Jurface (B8)	ce of Reduced Iron (C4) Iron Reduction in Tilled Soils (C6) uck Surface (C7) Explain in Remarks)	 Stunted or Stressed Plants (D Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 	1)
Field Observations:				
Surface Water Present?	Yes No 🟒	Depth (inches):		
Water Table Present?	Yes No 🟒	Depth (inches):	Wetland Hydrology Present?	Yes 🟒 No
Saturation Present?	Yes 🟒 No	Depth (inches): 0		
(includes capillary fringe)			-	
Describe Recorded Data (stream g Remarks: The criteria for wetland hydrology	;auge, monitoring well, ae	rial photos, previous inspections), if	available:	

VEGETATION -- Use scientific names of plants.

Sampling Point: UPL-1

<u>% cover species? Status</u> Number of Dominant species that 4	(^)							
	(A)							
1. <u>Quercus rubra</u> <u>35 Yes</u> FALU Total Number of Dominant Species								
2. <u>Acer rubrum</u> <u>30 Yes</u> FAC Across All Strata: 5	(B)							
3 Percent of Dominant Species That								
4 Are OBL, FACW, or FAC: 80	(A/B)							
5 Prevalence Index worksheet:								
6 Total % Cover of: Multiply By:								
7 OBL species 0 x 1 =	0							
65 = Total Cover FACW species 5 x 2 =	10							
Sapling/Shrub Stratum (Plot size:) FAC species 55 x 3 =	65							
1. Betula alleghaniensis 15 Yes FAC FAC FACU species 35 x 4 =	40							
2. <u>Acer rubrum</u> 10 Yes FAC UPL species 0 x 5 =	0							
3 Column Totals 95 (A)	(B)							
4 Prevalence Index = 8/A = 3.3	(8)							
5								
6. Hydrophytic Vegetation Indicators:								
7 1- Rapid Test for Hydrophytic Vegetation								
$\frac{25}{25} = \text{Total Cover}$								
Herb Stratum (Plot size: $_5 \text{ ft}$)								
1. Osmundastrum cinnamomeum 5 Yes FACW	orting							
2. Droblomatic Ludrophytic Vegetation (Evaluation	`							
3. Indicators of hydrophylic vegetation: (Explain) Ist ba							
4. Intersent unless disturbed or problematic	ist be							
5. Definitions of Veretation Strata:								
f	otor at							
7 Inter a woody plants 5 mill (7.0 cm) of more in diam	elei al							
8 Sanling/shrub – Woody plants less than 3 in DBH	nd							
g greater than or equal to 3.28 ft (1 m) tall.								
10 Herb – All herbaceous (non-woody) plants, regard	ess of							
size, and woody plants less than 3.28 ft tall.								
Woody vines – All woody vines greater than 3.28 fr	in							
height.								
Hydrophytic Vegetation Present? Yes 🗸 No								
2								
3								
4								
= Total Cover								
Remarks: (Include photo numbers here or on a separate sheet.)								
A positive indication of hydrophytic vegetation was observed (>50% of dominant species indexed as OBL, FACW, or FAC).								
Profile Description: (Describe to the depth needed to document the indicator or confirm the ab								bsence of indicators.)
--	------------------------------	-------------	--------------------	------------------	--------------------------------	------------------------	------------------------------	--
(inches)		04	Color (moist)	م real ۵۸	Tuno1	1002	Toyturo	Demarks
		100			туре	LUC	Silt Loop	
2 6	10YR 4/3	40	10YR 3/1	30				m
2-0			10YR 4/2	28			Clay Loai	m
			10VR 5/6			N/	Clay Loai	
6 14	10\/D 4/4		10VR 5//			IVI		·····
0-14	101R 4/4	70	1011(3/4	30				y
	-							
				·				
				·				
1T	Concentration D					N 4	Canal Cardina 21	
$\frac{1}{1}$	concentration, D =	Depletio	on, RIVI = Reduced	a Mat	rix, ivis =	Masked	Sand Grains. ² Lo	ocation: PL = Pore Lining, M = Matrix.
Hydric Soil	Indicators:				c (c			Indicators for Problematic Hydric Soils ³ :
Histoso	l (A1)		Polyvalue Be	elow S	urface (S	8) (LRR	R, MLRA 149B)	2 cm Muck (A10) (LRR K, L, MLRA 149B)
HISUC E	pipedon (AZ)		I nin Dark St	irrace ov Mir	(59) (LRF local (E1)	(K, IVILK /I DD I/	A 149B)	Coast Prairie Redox (A16) (LRR K, L, R)
Black II	en Sulfide (A4)			od Ma	trix (F2)		L)	5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Stratifie	ed Lavers (A5)		Depleted Ma	atrix (l	=3)			Dark Surface (S7) (LRR K, L)
Deplete	ed Below Dark Surf	face (A11) Redox Dark	Surfa	ce (F6)			Polyvalue Below Surface (S8) (LRR K, L)
Thick D	ark Surface (A12)	-	Depleted Da	rk Su	rface (F7)		Thin Dark Surface (S9) (LRR K, L)
Sandy M	Mucky Mineral (S1)	1	Redox Depre	essior	is (F8)			Iron-Manganese Masses (F12) (LRR K, L, R)
Sandy (Gleyed Matrix (S4)							Pleamont Floodplain Solis (F19) (MLRA 149B)
Sandy F	Redox (S5)							Mesic spoulc (TA6) (MERA 144A, 145, 149B)
Strippe	d Matrix (S6)							Very Shallow Dark Surface (TE12)
Dark Su	urface (S7) (LRR R, I	MLRA 14	9B)					Other (Explain in Remarks)
21 12 1								
Protectors	of hydrophytic veg	getation	and wetland hyd	rolog	y must b	e preser	it, unless disturbe	d or problematic.
Restrictive	Layer (if observed)):	D. d.			1.1	C - 11 D + 2	Mar Na (
	Type:		ROCK	-		Hyaric	Soli Present?	Yes NO
	Depth (inches):		15					
Remarks:								
No positive	indication of hydr	ric soils v	vas observed.					

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: Tower Hi	II		City/County: F	Pelham, Hamp	shire		Sampling Date: 2020-Mar-23			
Applicant/Owner:			State: N	/IA	Sampling Point: W-1-PFO					
Investigator(s): Kevi	n Ferguson, Gr	eg Russo	Section, Township, Range: NA							
Landform (hillslope, te	rrace, etc.):	Depression		Local relie	f (concave, co	nvex, none):	Concave	Slope (%): 0 to 1		
Subregion (LRR or MLF	RA): LRR F	1		Lat:	42.3683485	073 Long:	-72.4303719085	Datum: WGS84		
Soil Map Unit Name:	Scituate fine	sandy loam, 3 to	o 8 percent slo	pes, very ston	/		NWI classifica	ation: PFO		
Are climatic/hydrologi	c conditions on	the site typical	for this time o	f year?	Yes 🟒 🛛	No (If no	o, explain in Remar	ks.)		
Are Vegetation,	Soil,	or Hydrology		y disturbed?	Are "Nor	mal Circums	tances" present?	Yes 🟒 No		
Are Vegetation,	Soil,	or Hydrology	naturally pr	roblematic?	(If neede	ed, explain an	y answers in Rema	rks.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

es _ 🖌 No											
es 🟒 No	Is the Sampled Area within a Wetland?	Yes 🟒 No									
es No	If yes, optional Wetland Site ID:	W-1-PFO									
Remarks: (Explain alternative procedures here or in a separate report)											
Covertype is PFO. Area is wetland, all three wetland parameters are present.											
	es No es No es No or in a separate report) and parameters are pr	es ✓ No Is the Sampled Area within a Wetland? es ✓ No If yes, optional Wetland Site ID: or in a separate report) and parameters are present.									

HYDROLOGY

Wetland Hydrology Indicators:							
Primary Indicators (minimum of or	<u>ie is required; check al</u>	l that apply)		Secondary Indicators (minimum of two required)			
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) 	Wate Aqua Marl Hydr Oxidi	r-Stained Leaves (B9) tic Fauna (B13) Deposits (B15) ogen Sulfide Odor (C1) ized Rhizospheres on Living	Roots (C3)	 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) 			
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Ima Sparsely Vegetated Concave Su 	Prese Recer Thin agery (B7) Othe ırface (B8)	 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 					
Field Observations:							
Surface Water Present?	Yes No 🟒	Depth (inches):					
Water Table Present?	Yes 🟒 No	Depth (inches):	5	Wetland Hydrology Present? Yes _ No			
Saturation Present?	Yes 🟒 No	Depth (inches):	0				
(includes capillary fringe)							
Describe Recorded Data (stream g	auge, monitoring well,	aerial photos, previous insp	ections), if	available:			

Remarks:

The criteria for wetland hydrology has been met..

VEGETATION -- Use scientific names of plants.

Sampling Point: W-1-PFO

Tree Stratum (Plot size: <u>30 ft</u>)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test works	heet: Species That	4	(A)
1. Betula alleghaniensis	10	Yes	FAC	Are OBL, FACW, or FAC	:		(, ,
2. Fraxinus pennsylvanica	5	Yes	FACW	Total Number of Domi Across All Strata:	nant Species	4	(B)
4.				Percent of Dominant S Are OBL, FACW, or FAC	pecies That	100	(A/B)
5				Prevalence Index work	sheet:		
6				- Total % Cover	of:	Multiply	Bv:
7				- OBL species	0	x 1 =	0
	15	= Total Cov	er	FACW species	25	x 2 =	50
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)				FAC species	20	x 3 =	60
1. Acer rubrum	10	Yes	FAC	FACI I species	0	× 1 -	0
2.					0	×4- ×5-	0
3.				Column Totala	0	x 5	0
4.		·			45	(A)	110 (B)
5.		·		Prevalence li	ndex = B/A =	2.4	
6		<u> </u>		Hydrophytic Vegetatio	n Indicators:		
7		<u> </u>		1- Rapid Test for	Hydrophytic V	/egetation	
/		- Total Car		2 - Dominance Te	st is >50%		
	10		er	3 - Prevalence Inc	dex is $\leq 3.0^1$		
Herb Stratum (Plot size: <u>5 ft</u>)	40			🟒 4 - Morphologica	l Adaptations ¹	(Provide	supporting
1. Rhizobium Spp.	40			data in Remarks or on	a separate sh	neet)	
2. <u>Coptis trifolia</u>	15	Yes	FACW	Problematic Hydi	rophytic Vege	tation ¹ (Ex	plain)
3. <u>Veratrum viride</u>	5	No	FACW	¹ Indicators of hydric so	il and wetlan	d hydrolo	gy must be
4.				present, unless disturb	oed or probler	matic	
5				Definitions of Vegetati	on Strata:		
6				Tree – Woody plants 3	in. (7.6 cm) or	r more in o	diameter at
7				breast height (DBH), re	gardless of h	eight.	
8.				Sapling/shrub - Woody	y plants less tl	han 3 in. D	OBH and
9.				greater than or equal t	o 3.28 ft (1 m) tall.	
10.				Herb – All herbaceous	(non-woody)	plants, re	gardless of
11.				size, and woody plants	less than 3.2	8 ft tall.	
12				Woody vines – All woo	dy vines great	ter than 3.	.28 ft in
	60	= Total Cov	er				
<u>Woody Vine Stratum</u> (Plot size: <u>30 ft</u>)		-		Hydrophytic Vegetatio	on Present?	/es 🟒 N	lo
1.							
2.		·		-			
3.				-			
4		<u> </u>		-			
	0	= Total Cov	er	-			
Pemarke: (Include photo numbers here or on a sense	rate cheat \						
Remarks: (include photo numbers here or on a separ	ate sneet.)						
A positive indication of hydrophytic vegetation was o	bserved (>50)% of domin	ant species	indexed as OBL, FACW, o	or FAC).		

(inches)	Matrix		Redox	Featu	ures			,
(interies)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 7	10YR 2/1	100		· ·		()rg matter Muck	
7 - 18	10YR 4/1	100					Sandy Loam	
<u> </u>								
				· ·		·		
				· ·		·		
				· ·				
ype: C = C	Concentration, D =	Depletio	n, RM = Reduced	Matri	ix, MS =	Masked Sand Grai	ns. ² Location: PL = Por	e Lining, M = Matrix.
dric Soil	Indicators:		·		-		Indicators for P	roblematic Hydric Soils ³ :
_ Histoso	l (A1)		Polyvalue Bel	ow Su	urface (S	8) (LRR R, MLRA 14	19B) 2 cm Muck	
Histic Epipedon (A2) Thin Dark Surface (S9) (LRR R, MLRA 149B)							Coast Prairi	e Redox (A16) (LRR K. L. R)
Black Histic (A3) Loamy Mucky Mineral (F1) (LRR K, L)						5 cm Mucky	Peat or Peat (S3) (LRR K, L, R)	
_ Hydroge	en Sulfide (A4)		Loamy Gleyed	d Mat	rix (F2)		Dark Surfac	e (S7) (LRR K, L)
_ Stratifie	d Layers (A5) d Bolow Dark Surf	200 (111)	Depleted Mat	rix (F.	3) a (E6)		Polyvalue B	elow Surface (S8) (LRR K, L)
Thick D	ark Surface (A12)		Depleted Dark 3	k Sur	e (FO) face (F7)		Thin Dark S	urface (S9) (LRR K, L)
Sandy N	Aucky Mineral (S1)		Redox Depres	ssion	s (F8)		Iron-Manga	nese Masses (F12) (LRR K, L, R)
Sandy G	Gleved Matrix (S4)						Piedmont F	loodplain Soils (F19) (MLRA 149B)
Sandy F	Redox (S5)						Mesic Spod	ic (TA6) (MLRA 144A, 145, 149B)
Stripped	d Matrix (S6)						Red Parent	Material (F21)
Dark Su	rface (S7) (LRR R, N	/ILRA 149	9B)				Other (Expl	ain in Remarks)
	- 6 have a large the state of			- 1			istude de serve blans stis	
ndicators	of hydrophytic veg	etation a	and wetland hydr	ology	must be	e present, uniess c	isturbed or problematic	•
esuicuvei	Type	•	None			Hydric Soil Prese	nt?	Ves / No
	Depth (inches):		None			ingune son Prese		
	Depth (inches).							<u> </u>
endrks.								
	ndication of hydric	soil was	observed.					
positive i								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive ii								
positive i								
positive i								
positive ii								
positive ii								

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: Tower Hi	II	Cit	t y/County: Pelham, Ham	ipshire		Sampling Date: 2020-Mar-23					
Applicant/Owner: Cowls W.D., Inc.				State: M	۹	Sampling Point: W-1-UPL					
Investigator(s): Kevi	n Ferguson, Gr	eg Russo	S	Section, Township, Range: NA							
Landform (hillslope, te	rrace, etc.):	Flat	Local rel	ief (concave, con	vex, none):	None	Slope (%): 1 to 3				
Subregion (LRR or MLF	RA): LRR I	र	Li	at: 42.36822026	53 Long:	-72.4303689635	Datum: WGS84				
Soil Map Unit Name:	Scituate fine	sandy loam, 3 to 8	percent slopes, very sto	ny		NWI classificatio	on: None				
Are climatic/hydrologic	conditions or	the site typical fo	r this time of year?	Yes 🟒 N	o (lf nc	, explain in Remarks.)				
Are Vegetation,	Soil,	or Hydrology	significantly disturbed?	Are "Norn	nal Circumst	ances" present?	Yes 🟒 No				
Are Vegetation,	Soil,	or Hydrology	naturally problematic?	(If needed	l, explain an	y answers in Remarks	5.)				

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes No 🟒										
Hydric Soil Present?	Yes No 🟒	Is the Sampled Area within a Wetland?	Yes No 🟒								
Wetland Hydrology Present?	Yes No 🟒	If yes, optional Wetland Site ID:									
Remarks: (Explain alternative procedures here or in a separate report)											
Covertype is UPL. Area is upland, not all three wetland parameters are present.											

HYDROLOGY

Wetland Hydrology Indicators:						
Primary Indicators (minimum of o	ne is requi	red; check a	ll that apply)	Secondary Indicators (minimum of two required)		
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) 		Wate Aqua Marl Hydr Oxid	er-Stained Leaves (B9) itic Fauna (B13) Deposits (B15) ogen Sulfide Odor (C1) ized Rhizospheres on Living Roots (C3)	 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) 		
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Im Sparsely Vegetated Concave Summary Sparsely Vegetated Concave Summary Spary Sparsely Vegetated Concave Summary Sparsely Vegetated Concav	agery (B7) urface (B8 <u>)</u>	Preso Rece Thin Othe	ence of Reduced Iron (C4) nt Iron Reduction in Tilled Soils (C6) Muck Surface (C7) r (Explain in Remarks)	 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 		
Field Observations:						
Surface Water Present?	Yes	_ No 🟒	Depth (inches):			
Water Table Present?	Yes	_ No 🟒	Depth (inches):	Wetland Hydrology Present? Yes No _		
Saturation Present?	Yes	_ No 🟒	Depth (inches):			
(includes capillary fringe)				-		
Describe Recorded Data (stream g	auge, moi	nitoring well,	aerial photos, previous inspections), if	available:		

Remarks:

The criteria for wetland hydrology has not been met.

VEGETATION -- Use scientific names of plants.

Sampling Point: W-1-UPL

<u>Tree Stratum</u> (Plot size: <u>30 ft</u>)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksh Number of Dominant S	n eet: pecies That	1	(Δ)
1. Tsuga canadensis	30	Yes	FAC	Are OBL, FACW, or FAC:			(~)
2.				Total Number of Domir	ant Species	5	(B)
3				Percent of Dominant Sr	pecies That		
4				Are OBL, FACW, or FAC:		20	(A/B)
5				 Prevalence Index works 	sheet:		
o				- <u>Total % Cover</u>	<u>of:</u>	<u>Multiply</u>	By:
7				- OBL species	0	x 1 =	0
	30	= lotal Cov	er	FACW species	0	x 2 =	0
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)				FAC species	30	x 3 =	90
1. <u>Mitchella repens</u>	40	Yes	FACU	- FACU species	90	x 4 =	360
2. Tsuga canadensis	20	Yes	FACU	- UPL species	0	x 5 =	0
3. <i>Kalmia latifolia</i>	10	No	FACU	- Column Totals	120	(A)	450 (B)
4				Prevalence In	idex = B/A =	<u> </u>	130 (D)
5				Hydrophytic Vegetation	Indicators:		
6				1- Rapid Test for H	lydrophytic V	/egetatior	า
7				2 - Dominance Tes	st is > 50%	0	
	70	= Total Cov	er	3 - Prevalence Ind	$ex is < 3.0^{1}$		
<u>Herb Stratum</u> (Plot size: <u>5 ft</u>)				4 - Morphological	Adaptations	(Provide	supporting
1. Dendrolycopodium dendroideum	10	Yes	FACU	- data in Remarks or on a	a senarate sh	(FTOVICE neet)	Supporting
2. Pinus strobus	10	Yes	FACU	Problematic Hydro	ophytic Vege	tation ¹ (E)	xplain)
3.				¹ Indicators of hydric so	il and wetlan	d hydrolo	ogy must be
4.				present, unless disturb	ed or proble	matic	By mast be
5.				Definitions of Vegetatio	on Strata:		
6.				Tree – Woody plants 3 i	n. (7.6 cm) oi	r more in	diameter at
7.				breast height (DBH), reg	gardless of h	eight.	
8				Sapling/shrub - Woody	plants less t	han 3 in. l	DBH and
9.				greater than or equal to	o 3.28 ft (1 m) tall.	
10.				Herb – All herbaceous (non-woody)	plants, re	gardless of
11.				size, and woody plants	less than 3.2	8 ft tall.	
12.				Woody vines – All wood	ly vines great	ter than 3	.28 ft in
	20	= Total Cov	er			, .	
Woody Vine Stratum (Plot size: <u>30 ft</u>)				Hydrophytic vegetation	n Present?	res i	NO <u>/</u>
1				-			
2				_			
3				_			
4				_			
	0	= Total Cov	er				
Remarks: (Include photo numbers here or on a se	parate sheet.)						
No positive indication of hydrophytic vegetation w	as observed (≥	50% of dom	ninant speci	es indexed as FAC- or dri	er).		
			·				

Profile Des	cription: (Describe	to the d	epth needed to o	locun	nent the i	indicato	r or confirm the	absence of indi	cators.)
(inches)	(maint)	04	Color (moist)		Turnel	1.0.02	Tout		Domorico
(incries)		100		970	туре	LOC			Remarks
0-6	10YR 2/1	100		·			SIIL L	laam	
6-11	10YR 3/1	100	4.00/15.4/4				Sandy	Loam	
11 - 14	10YR 3/1	70	10YR 4/1	30			Sandy	Loam	
14+	Refusal			·					Refusal due to rock.
				·					
				·					
				·					
				·					
				·					
¹ Type: C = C	Concentration, D =	Depleti	on, RM = Reduced	d Mat	rix, MS =	Masked	Sand Grains.	² Location: PL = F	Pore Lining, M = Matrix.
Hydric Soil	Indicators:							Indicators fo	or Problematic Hydric Soils ³ :
Histoso	l (A1)		Polyvalue Be	elow S	Surface (S	58) (LRR	R, MLRA 149B)	2 cm Mu	ck (A10) (LRR K, L, MLRA 149B)
Histic Ep	oipedon (A2)		Thin Dark Su	irface	(S9) (LRF	R R, MLR	A 149B)	Coast Pr	airie Redox (A16) (LRR K, L, R)
Black Hi	istic (A3)		Loamy Muck	y Mir	neral (F1)	(LRR K,	L)	5 cm Mu	cky Peat or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		Loamy Gleye	ed Ma	trix (F2)			Dark Sur	face (S7) (LRR K, L)
Stratifie	d Layers (A5) d Bolow Dark Surd	Faco (A11	Depleted Ma	atrix (I Surfa	F3) co (E6)			Polyvalu	e Below Surface (S8) (LRR K, L)
Depiete	ark Surface (A12)	Iace (ATT	Depleted Da	suna rk Su	rface (FO)	`		Thin Dar	k Surface (S9) (LRR K, L)
Sandy N	lucky Mineral (S1)		Bedox Depre	ession	nace (i 7) ns (F8))		Iron-Mar	nganese Masses (F12) (LRR K, L, R)
Sandy (Gleved Matrix (S4)				.5 (. 6)			Piedmor	nt Floodplain Soils (F19) (MLRA 149B)
Sandy F	edox (S5)							Mesic Sp	oodic (TA6) (MLRA 144A, 145, 149B)
Strinner	d Matrix (S6)							Red Pare	ent Material (F21)
Dark Su	urface (S7) (I RR R	MI RA 14	9B)					Very Sha	llow Dark Surface (TF12)
Durk Su			50)					Other (E	xplain in Remarks)
³ Indicators	of hydrophytic ve	getation	and wetland hyd	rolog	y must b	e preser	nt, unless disturk	oed or problema	atic.
Restrictive	Layer (if observed)):							
	Туре:	l	arge gravel	-		Hydric	Soil Present?		Yes No 🟒
	Depth (inches):		14						
Remarks:									
No positivo	indication of byd	ric soil w	as observed Pof	ادعا ط	ue to co	arso roc	k fragmonts		
No positive	indication of fiyu		as observed. Ren	usai u		arseroc	k iraginents.		

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: Tower Hi	ill	c	city/County: Pe	lham, Hamps	hire		Sampling Date: 2020-Mar-23			
Applicant/Owner:				State: MA		Sampling Point: W-2-PFO				
Investigator(s): Kevi	n Ferguson, G	AR	Section, Township, Range: NA							
Landform (hillslope, te	errace, etc.):	Depression		Local relief	(concave, conve	x, none):	Concave	Slope (%): 1 to 3		
Subregion (LRR or ML	RA): LRR	२		Lat:	42.3669320046	Long:	-72.4318132891	Datum: WGS84		
Soil Map Unit Name:	Scituate fine	sandy loam, 3 to	8 percent slop	es, very stony			NWI classific	ation: None		
Are climatic/hydrologi	c conditions or	the site typical fo	or this time of y	year?	Yes 🟒 No _	(If no	o, explain in Rema	rks.)		
Are Vegetation,	Soil,	or Hydrology	_ significantly of	disturbed?	Are "Normal	Circums	tances" present?	Yes 🟒 No		
Are Vegetation,	Soil,	or Hydrology	_ naturally pro	blematic?	(If needed, e	xplain ar	y answers in Rem	arks.)		

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🟒 No		
Hydric Soil Present?	Yes 🟒 No	Is the Sampled Area within a Wetland?	Yes 🯒 No
Wetland Hydrology Present?	Yes 🟒 No	lf yes, optional Wetland Site ID:	W-2-PFO
Remarks: (Explain alternative procedures he	re or in a separate report)	
Covertype is PFO. Area is wetland, all three v	vetland parameters are p	resent.	

HYDROLOGY

Wetland Hydrology Indicators:		
Primary Indicators (minimum of one is required	<u>; check all that apply)</u>	Secondary Indicators (minimum of two required)
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) 	 Water-Stained Leaves (B9) Aquatic Fauna (B13) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3) 	 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Imagery (B7) Sparsely Vegetated Concave Surface (B8) 	 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 	
Field Observations:		
Surface Water Present? Yes 🟒 N	Depth (inches): 1	_
Water Table Present? Yes 🟒 N	Depth (inches): 1	Wetland Hydrology Present? Yes 🟒 No
Saturation Present? Yes 🧹 N	Depth (inches): 0	
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monito	ring well, aerial photos, previous inspections), if	available:

The criterion for wetland hydrology is met.

VEGETATION -- Use scientific names of plants.

Sampling Point: W-2-PFO

1. Acer rubrum 15 2.	Yes 	FAC FAC over FACW OBL	Are OBL, FACW, or FAC:Total Number of Dominant SpeciesAcross All Strata:Percent of Dominant Species ThatAre OBL, FACW, or FAC:Prevalence Index worksheet:Total % Cover of:Multiply ByOBL species5X 1 =FACW species10x 2 =FAC species0x 4 =UPL species0x 5 =Column Totals30(A)Prevalence Index = B/A =2.3Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is \leq 3.01 \checkmark 4 - Morphological Adaptations1 (Provide sudata in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation 1 (Explain 1)'Indicators of hydric soil and wetland hydrologypresent, unless disturbed or problematic	(B) (A/B) (A
2.	= Total C	over 	Total Number of Dominant Species3Across All Strata:100Percent of Dominant Species That100Are OBL, FACW, or FAC:100Prevalence Index worksheet:0Total % Cover of:Multiply ByOBL species5X 1 =FACW species10X 2 =FAC species15X 3 =FACU species0X 4 =UPL species0X 5 =Column Totals30AndPrevalence Index = B/A =2.3Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is \leq 3.01 \checkmark 4 - Morphological Adaptations1 (Provide sudata in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation 1 (Expl.1 Indicators of hydric soil and wetland hydrologypresent, unless disturbed or problematic	(B) (A/B) 20 45 0 0 70 (B) 70 (B) upporting
3.	= Total C	over 	Percent of Dominant Species ThatAre OBL, FACW, or FAC:100Prevalence Index worksheet: 100 OBL species 5 x 1 =FACW species 10 x 2 =FAC species 10 x 3 =FACU species 0 x 4 =UPL species 0 x 5 =Column Totals 30 A)Prevalence Index = B/A =2.3Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is $\leq 3.0^1$ \checkmark 4 - Morphological Adaptations1 (Provide sudata in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Explantion)1Indicators of hydric soil and wetland hydrologypresent, unless disturbed or problematic	(A/B) y: 5 20 45 0 0 70 (B)
4.	= Total C	over 	Are OBL, FACW, or FAC:ItuuPrevalence Index worksheet:Total % Cover of:Multiply ByOBL species 5 X 1 =FACW species 10 X 2 =FAC species 15 X 3 =FACU species 0 X 4 =UPL species 0 X 5 =Column Totals 30 Are only the transformation of transformation of transformation of transformation of the transformation of transformation of the trans	(A/B) 5 20 45 0 0 70 (B)
6.	= Total C	over 	Prevalence Index worksheet:InterpretationTotal % Cover of:Multiply ByOBL speciesFACW species10KAC species15KAC species15KAC species0KAC species1Rapid text for Hydrophytic VegetationIndicators of hydric soil and wetland hydrologyPresent, unless disturbed or problematic	y: 5 20 45 0 70 (B) 70 (B)
7.	= Total C	over FACW OBL	Total % Cover of:Multiply ByOBL species5x 1 =FACW species10x 2 =FAC species15x 3 =FACU species0x 4 =UPL species0x 5 =Column Totals30(A)Prevalence Index = B/A =2.3Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation2 - Dominance Test is >50%4 - Morphological Adaptations1 (Provide sudata in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Expl.1Indicators of hydric soil and wetland hydrologypresent, unless disturbed or problematic	y: 5 20 45 0 70 (B)
15 Sapling/Shrub Stratum (Plot size: _15 ft) 1.	= Total C	over over over FACW OBL	OBL species5x 1 =FACW species10x 2 =FAC species15x 3 =FAC species0x 4 =UPL species0x 5 =Column Totals30(A)Prevalence Index = B/A =2.3Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is \leq 3.01 \checkmark 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation1 (Explanation)1 Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	5 20 45 0 70 (B)
Sapling/Shrub Stratum (Plot size: _15 ft _) 1.	= Total C	over FACW OBL	FACW species10x 2 =FAC species15x 3 =FAC species0x 4 =UPL species0x 5 =Column Totals30(A)Prevalence Index = $B/A = 2.3$ Hydrophytic Vegetation Indicators:1 - Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is $\leq 3.0^1$ \checkmark 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation1 (Explanation)1 - Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	20 45 0 70 (B)
1.	= Total C 	over FACW OBL	FAC species15x 3 =FACU species0x 4 =UPL species0x 5 =Column Totals30(A)Prevalence Index = $B/A = 2.3$ Hydrophytic Vegetation Indicators:1- Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is $\leq 3.0^1$ \checkmark 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation1 (Explanation)1Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	45 0 70 (B)
1.	= Total C 	over OBL	FACU species0x 4 =UPL species0x 5 =Column Totals30(A)Prevalence Index = $B/A = 2.3$ Hydrophytic Vegetation Indicators:1- Rapid Test for Hydrophytic Vegetation \checkmark 2 - Dominance Test is >50% \checkmark 3 - Prevalence Index is $\leq 3.0^1$ \checkmark 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet)Problematic Hydrophytic Vegetation1 (Explanation)1 Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	0 70 (B) upporting lain) v must be
2.	= Total C Yes	over 	UPL species 0 x 5 = Column Totals 30 (A) Prevalence Index = B/A = 2.3 Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% 3 - Prevalence Index is ≤ 3.01 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Explanation) 1Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	0 70 (B) upporting lain) v must be
3.	= Total C 	over FACW OBL	Column Totals 30 (A) Prevalence Index = B/A = 2.3 Hydrophytic Vegetation Indicators: 1 - Rapid Test for Hydrophytic Vegetation ✓ 2 - Dominance Test is >50% ✓ 3 - Prevalence Index is ≤ 3.01 ✓ 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Expl. 1Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	70 (B) upporting lain) v must be
4.	= Total C Yes Yes	over FACW OBL	Prevalence Index = B/A =	upporting lain) / must be
5.	= Total C Yes Yes	over FACW OBL	Hydrophytic Vegetation Indicators: 1- Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% 3 - Prevalence Index is ≤ 3.01 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Expl.) 1Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	upporting lain) / must be
0 1. Osmundastrum (Plot size: _5 ft_) 1. Osmundastrum cinnamomeum 10 2. Sphagnum Spp. 5. 3. 4. 5. 6. 7. 8. 9. 10. 11	= Total C Yes Yes	over FACW OBL	 1 - Rapid Test for Hydrophytic Vegetation 2 - Dominance Test is >50% 3 - Prevalence Index is ≤ 3.01 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Expl. Problematic Hydrophytic Vegetation1 (Expl. Problematic Hydrophytic Vegetation1 (Expl. Problematic Soft and wetland hydrology present, unless disturbed or problematic 	upporting lain) v must be
7. 0 Herb Stratum (Plot size: _5 ft) 10 1. Osmundastrum cinnamomeum 10 2. Sphagnum Spp. 5 3. 5 4. 5 5. 6 7. 5 8. 9 10. 11	= Total C Yes Yes	over FACW OBL	 _✓ 2 - Dominance Test is >50% _✓ 3 - Prevalence Index is ≤ 3.01 _✓ 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation1 (Explanation) 1Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic 	upporting lain) v must be
0 Herb Stratum (Plot size: _5 ft) 1. Osmundastrum cinnamomeum 10 2. Sphagnum Spp. 5 3.	_ = lotal C _ Yes _ Yes	FACW OBL	✓ 3 - Prevalence Index is ≤ 3.01 ✓ 4 - Morphological Adaptations1 (Provide su data in Remarks or on a separate sheet) — Problematic Hydrophytic Vegetation1 (Explanation) 1Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic	upporting lain) / must be
Herb Stratum (Plot size: _5 ft) 1. Osmundastrum cinnamomeum 10 2. Sphagnum Spp. 5 3.	Yes Yes	FACW OBL	 4 - Morphological Adaptations¹ (Provide su data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Expl. ¹Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic 	upporting lain) / must be
1. Osmundastrum cinnamomeum 10 2. Sphagnum Spp. 5 3.	Yes Yes	OBL	 data in Remarks or on a separate sheet) Problematic Hydrophytic Vegetation¹ (Expl. ¹Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic 	lain) / must be
2. Sphagnum Spp. 5 3.	Yes	OBL	 Problematic Hydrophytic Vegetation¹ (Expl. ¹Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic 	lain) / must be
3.			 Indicators of hydric soil and wetland hydrology present, unless disturbed or problematic 	/ must be
4.			present, unless disturbed or problematic	
5				
6			Definitions of Vegetation Strata:	
7			Tree – Woody plants 3 in. (7.6 cm) or more in dia	ameter a
8			breast height (DBH), regardless of height.	
9			Sapling/shrub – Woody plants less than 3 in. DB	3H and
10			greater than or equal to 3.28 ft (1 m) tall.	
11	_		Herb – All herbaceous (non-woody) plants, rega	rdless of
11.			size, and woody plants less than 3.28 ft tall.	
12			Woody vines – All woody vines greater than 3.28	8 ft in
15	= Total C	over		
Woody Vine Stratum (Plot size: <u>30 ft</u>)			Hydrophytic Vegetation Present? Yes No	
1			_	
2				
3				
4				
0	= Total C	over		
Remarks: (Include photo numbers here or on a separate sheet				
A positive indication of hydrophytic vegetation was observed (50% of dor	ainant spocie	as indexed as OBLEACW or EAC)	

Profile Des	cription: (Describe	to the de	epth needed to de	ocun	nent the	indicato	r or confirm the	absence of indic	cators.)
Depth	Matrix		Redox	Feat	ures				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Text	ture	Remarks
0 - 8	10YR 2/1	100					Hemic	Muck	
8 - 10	10YR 5/2	100					Silt L	.oam	
10 - 18	10YR 5/6	100					Silt L	.oam	
				_					
	-								
		·		_					
				—				<u> </u>	
				—					
				—					
				—					
		·		—		<u> </u>			
¹ Type: C = C	Concentration, D =	Depletio	n, RM = Reduced	Mat	rix, MS =	Masked	Sand Grains.	² Location: PL = P	Pore Lining, M = Matrix.
Hydric Soil	Indicators:							Indicators fo	r Problematic Hydric Soils ³ :
Histoso	l (A1)		Polyvalue Bel	ow S	urface (S	58) (LRR	R, MLRA 149B)	2 cm Mu	ck (A10) (LRR K, L, MLRA 149B)
Histic Ep	oipedon (A2)		Thin Dark Su	face	(S9) (LRF	R R, MLR	A 149B)	Coast Pra	airie Redox (A16) (LRR K, L, R)
Black Hi	istic (A3)		Loamy Mucky	/ Mir	eral (F1)	(LRR K, I	L)	5 cm Mu	cky Peat or Peat (S3) (LRR K, L, R)
Hydroge	en Sulfide (A4)		Loamy Gleye	d Ma	trix (F2)			Dark Sur	face (S7) (LRR K, L)
Stratifie	d Layers (A5)		Depleted Mat	rix (F3)			Polyvalue	e Below Surface (S8) (LRR K, L)
_∕ Deplete	d Below Dark Surfa	ace (A11) Redox Dark S	urfa	ce (F6)	、 、		Thin Dar	k Surface (S9) (LRR K, L)
THICK Da	Ark Surface (ATZ)		Depieted Dar	k Su	riace (F7))		Iron-Man	nganese Masses (F12) (LRR K, L, R)
Sanuy N	Nucky Willeral (ST)		Redox Depre	SSIO	IS (F8)			Piedmon	t Floodplain Soils (F19) (MLRA 149B)
Sandy G	bieyed Matrix (S4)							Mesic Sp	odic (TA6) (MLRA 144A, 145, 149B)
Sandy H	(edox (S5)							Red Pare	nt Material (F21)
Stripped	d Matrix (S6)							Very Sha	llow Dark Surface (TF12)
Dark Su	irface (S7) (LRR R, N	/ILRA 149	9B)					Other (E>	(plain in Remarks)
³ Indicators	of hydrophytic veg	etation a	and wetland hydr	olog	y must b	e preser	nt, unless distur	bed or problema	atic.
Restrictive	Layer (if observed):	:			_			·	
	Type:		None			Hydric	Soil Present?		Yes _ 🖌 No
	Depth (inches):					5			
Remarks:									
A positive i	ndication of hydric	soil was	observed.						
	,								

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: Tower Hi	II		City/County: Pelha	am, Hampsł	nire		Sampling Date: 2	2020-Mar-23
Applicant/Owner: C	owls W.D., Inc.				State: MA		Sampling Point: W-	2-UPL
Investigator(s): Kevin Ferguson, Greg Russo Section, Township, Range:							A	
Landform (hillslope, te	rrace, etc.):	Foot slope		Local relief	(concave, convex,	, none):	Convex	Slope (%): 1 to 3
Subregion (LRR or MLRA): LRR R				Lat:	42.3669120706	Long:	-72.4316722032	Datum: WGS84
Soil Map Unit Name:	Scituate fine	sandy loam, 3 to	8 percent slopes,	, very stony		_	NWI classificat	i on: None
Are climatic/hydrologic conditions on the site typical for this time of year? Yes 🖌 No (If no, explain in Remarks.)								s.)
Are Vegetation,	Soil,	or Hydrology	significantly dis	turbed?	Are "Normal (Circums	tances" present?	Yes 🟒 No
Are Vegetation,	Soil,	or Hydrology	naturally proble	ematic?	(If needed, ex	plain an	y answers in Remar	ks.)

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes No 🟒		
Hydric Soil Present?	Yes No 🟒	Is the Sampled Area within a Wetland?	Yes No 🟒
Wetland Hydrology Present?	Yes No 🟒	If yes, optional Wetland Site ID:	
Remarks: (Explain alternative procedures h	ere or in a separate report)	
Covertype is UPL. Area is upland, not all thr	ee wetland parameters ar	e present.	

HYDROLOGY

Wetland Hydrology Indicators:			
Primary Indicators (minimum of on	e is required; ch	Secondary Indicators (minimum of two required)	
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) 		Water-Stained Leaves (B9) Aquatic Fauna (B13) Marl Deposits (B15) Hydrogen Sulfide Odor (C1) Oxidized Rhizospheres on Living Roots (C3)	 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Ima Sparsely Vegetated Concave Sur 	 gery (B7) rface (B8)	Presence of Reduced Iron (C4) Recent Iron Reduction in Tilled Soils (C6) Thin Muck Surface (C7) Other (Explain in Remarks)	 Stunted or Stressed Plants (D1) Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5)
Field Observations:			
Surface Water Present?	Yes No	Depth (inches):	
Water Table Present?	Yes No	Depth (inches):	Wetland Hydrology Present? Yes No _
Saturation Present?	Yes No	Depth (inches):	
(includes capillary fringe)			
Describe Recorded Data (stream ga	auge, monitoring	well, aerial photos, previous inspections), if a	vailable:

Remarks:

The criterion for wetland hydrology is not met.

VEGETATION -- Use scientific names of plants.

Sampling Point: W-2-UPL

<u>Tree Stratum</u> (Plot size: <u>30 ft</u>)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test works	heet: Species That	2	(A)
1. Betula alleghaniensis	20	Yes	FAC	Are OBL, FACW, or FAC:			
2. <u>Acer rubrum</u>	15	Yes	FAC	Total Number of Dominant Species Across All Strata:		4	(B)
4.				Percent of Dominant S Are OBL, FACW, or FAC	pecies That :	50	(A/B)
5				Prevalence Index work	sheet:		
6				- Total % Cover	of:	Multiply	Bv:
7				- OBL species	0	x 1 =	0
	35	= Total Cov	er	FACW species	0	x 2 =	0
<u>Sapling/Shrub Stratum</u> (Plot size: <u>15 ft</u>)				FAC species	35	x 3 =	105
1. <i>Kalmia latifolia</i>	15	Yes	FACU	- FACU species	20	x 4 =	80
2				UPL species	0	x 5 =	0
3				Column Totals	55	(A) -	185 (B)
4				Prevalence Ir	dex = B/A =	34	105 (D)
5							
6				1 Papid Test for k	Judrophytic \	logotation	
7					Tyur opriyue v $c = 500\%$	regetation	
	15	= Total Cov	er	2 - Dominance re	SUS > 50%		
<u>Herb Stratum</u> (Plot size: <u>5 ft</u>)				3 - Prevalence inc	Adaptations ²	(Drovida	cupporting
1. Dendrolycopodium dendroideum	5	Yes	FACU	4 - Morphological	a senarate sh		supporting
2				Problematic Hydr	ophytic Vege	tation ¹ (F)	(plain)
3				¹ Indicators of hydric so	il and wetlan	d hvdrolo	gy must be
4.				present, unless disturb	ed or proble	matic	6)
5.				Definitions of Vegetation	on Strata:		
6.				Tree – Woody plants 3	in. (7.6 cm) oi	r more in	diameter at
7.	_			breast height (DBH), re	gardless of h	eight.	
8.				Sapling/shrub - Woody	, plants less t	han 3 in. I	OBH and
9.				greater than or equal t	o 3.28 ft (1 m) tall.	
10.				Herb – All herbaceous	(non-woody)	plants, re	gardless of
11.				size, and woody plants	less than 3.2	8 ft tall.	
12.				Woody vines – All wood	dy vines great	ter than 3	.28 ft in
	5	= Total Cov	er	height.			
Woody Vine Stratum (Plot size: 30 ft)		-		Hydrophytic Vegetatio	n Present?	/es N	lo _
1							
2				-			
				-			
3				-			
···		= Total Cov	er	-			
		-					
Remarks: (Include photo numbers here or on a separa No positive indication of hydrophytic vegetation was o	ate sheet.) observed (≥	50% of dom	inant speci	es indexed as FAC– or dri	ier).		

Profile Des Depth	cription: (Describe Matrix	to the d	lepth needed to c Redox	locun (Feat	nent the i ures	indicato	r or confirm the	absence of indicators.)
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0 - 5	2.5YR 3/3	100			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Silt Loar	n
5 - 7	10YR 4/6	85	2 5YR 3/3	15			Silt Loar	n
	2 5YR 4/6	100	2.511(3/5				Silt Loar	n
	2.511(1)0	100						
				·				
¹ Type: C = 0	Concentration, D =	Depleti	on, RM = Reduced	d Mat	rix, MS =	Masked	Sand Grains. ²	Location: PL = Pore Lining, M = Matrix.
Hydric Soil	Indicators:							Indicators for Problematic Hydric Soils ³ :
Histoso	l (A1)		Polyvalue Be	low S	urface (S	8) (LRR	R, MLRA 149B)	2 cm Muck (A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		Thin Dark Su	irface	(S9) (LRF	R R, MLR	A 149B)	Coast Prairie Redox (A16) (LRR K, L, R)
Black H	istic (A3)		Loamy Muck	y Mir	eral (F1)	(LRR K,	L)	5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Hydrog	en Sulfide (A4)		Loamy Gleye	d Ma	trix (F2)			Dark Surface (S7) (LRR K, L)
Stratifie	ed Layers (A5)	aco (A11	Depleted Ma	itrix (I	-3) co (E6)			Polyvalue Below Surface (S8) (LRR K, L)
Depiete	ark Surface (A12)	ace (AT	Depleted Dark	suria rk Su	ce (F6) rfaco (E7)	N N		Thin Dark Surface (S9) (LRR K, L)
Sandy I	dik Sullace (ATZ) Mucky Mineral (S1)		Depleted Da	i k Su	nace (F7))		Iron-Manganese Masses (F12) (LRR K, L, R)
Sandy (Cloved Matrix (S4)			55101	15 (FO)			Piedmont Floodplain Soils (F19) (MLRA 149B)
Sanuy (Dedex (SE)							Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sanuy i	d Matrix (CC)							Red Parent Material (F21)
Strippe	d Matrix (S6)							Very Shallow Dark Surface (TF12)
Dark SU	uriace (S7) (LKK K, I	VILKA 14	198)					Other (Explain in Remarks)
³ Indicators	of hydrophytic veg	getation	and wetland hyd	rolog	y must b	e presei	nt, unless disturb	ed or problematic.
Restrictive	Layer (if observed)):						
	Type:		None			Hydric	Soil Present?	Yes No 🟒
	Depth (inches):					-		
Remarks:								
The criterio	on for hydric soil is	not met	t.					

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Tower Hil	I	Cit	ty/County: Pelham, Han	npshire	Sampling Date:	2020-Mar-25		
Applicant/Owner: Co	owls W.D., Inc.			State: MA		Sampling Point: W	/-3-PFO	
Investigator(s): Kevir	n Ferguson, Gr	eg Russo		ection, Township, Ra	nge: N	A		
Landform (hillslope, terrace, etc.): Depression Local relief (concave, convex, none): Concave Slope (%)								
Subregion (LRR or MLR	A): LRR R		L	Lat: 42.3657605288 Long:			Datum: WGS84	
Soil Map Unit Name:	Gloucester gr	avelly fine sandy l	loam, 8 to 15 percent slo	pes, very stony		NWI classifica	tion: None	
Are climatic/hydrologic conditions on the site typical for this time of year? Yes 🖌 No (If no, explain in Remarks.)								
Are Vegetation,	Soil, o	or Hydrology	significantly disturbed?	Are "Normal C	Circums	tances" present?	Yes 🟒 No	
Are Vegetation,	Soil, d	or Hydrology	naturally problematic?	(If needed, ex	plain an	y answers in Rema	rks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes No		
Hydric Soil Present?	Yes 🟒 No	Is the Sampled Area within a Wetland?	Yes 🟒 No _
Wetland Hydrology Present?	Yes 🟒 No	lf yes, optional Wetland Site ID:	W-3-PFO
Remarks: (Explain alternative procedures he	re or in a separate report)	
Covertype is PFO. Area is wetland, all three w	etland parameters are pr	resent.	

HYDROLOGY

Wetland Hydrology Indicators:					
Primary Indicators (minimum o	f one is required; check all '	<u>that apply)</u>		Secondary Indicators (minimum	of two required)
 ✓ Surface Water (A1) ✓ High Water Table (A2) ✓ Saturation (A3) Water Marks (B1) Sediment Deposits (B2) 	Water- Aquati Marl D Hydro Oxidiz	-Stained Leaves (B9) ic Fauna (B13) Deposits (B15) gen Sulfide Odor (C1) ed Rhizospheres on Living	Roots (C3)	 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Ir 	magery (C9)
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial Sparsely Vegetated Concave 	Preser Recent Thin M Imagery (B7) Other Surface (B8)	 Stunted or Stressed Plants (D Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 	91)		
Field Observations:					
Surface Water Present?	Yes 🟒 No	Depth (inches):	1	_	
Water Table Present?	Yes 🟒 No	Depth (inches):	1	Wetland Hydrology Present?	Yes 🟒 No
Saturation Present?	Yes 🟒 No	Depth (inches):	0		
(includes capillary fringe)				-	
Describe Recorded Data (strear Remarks:	n gauge, monitoring well, a	erial photos, previous ins	pections), if	available:	
The criteria for wetland hydrolo	is met.				

VEGETATION -- Use scientific names of plants.

Sampling Point: W-3-PFO

Tree Stratum (Plot size: <u>30 ft</u>)	Absolute	Dominant	Indicator	Dominance Test works	neet:		
1 Acor rubrum	10	Voc	FAC	Are OBL, FACW, or FAC:	pecies mat	4	(A)
2 Pinus strobus	5	Ves	FAC	Total Number of Domir	nant Species		(5)
2. Finus sulous		Voc	FACO	Across All Strata:	·	6	(B)
		163	FAC	Percent of Dominant Sp	pecies That	66.7	(A /D)
т. 				Are OBL, FACW, or FAC:			(A/ D)
5				 Prevalence Index works 	sheet:		
7				- <u>Total % Cover</u>	<u>of:</u>	Multiply	<u>By:</u>
/	20	- Total Cov	or	- OBL species	5	x 1 =	5
Capling/Chrub Stratum (Plot cize) 15 ft)	20		ei	FACW species	0	x 2 =	0
<u>Sapiing/Shrub Stratum</u> (Plot Size. <u>15 it</u>)	20	Vac	FACU	FAC species	20	x 3 =	60
		Yes	FACU	FACU species	25	x 4 =	100
	5	res	FAC	- UPL species	0	x 5 =	0
3				- Column Totals	50	(A)	165 (B)
4				- Prevalence In	idex = B/A =	3.3	
5				Hydrophytic Vegetation	Indicators:		
6				1- Rapid Test for H	lvdrophytic V	egetation	
7				2 - Dominance Tes	st is >50%	-8	
	25	= Total Cov	er	3 - Prevalence Ind	ex is $\leq 3.0^1$		
<u>Herb Stratum</u> (Plot size: <u>5 ft</u>)				✓ 4 - Morphological	Adaptations ¹	(Provide	supporting
1. Sphagnum Spp.	5	Yes	OBL	— data in Remarks or on a separate sheet)			
2				Problematic Hydro	ophytic Veget	tation ¹ (Ex	plain)
3				- ¹ Indicators of hydric so	il and wetland	d hydrolo	gy must be
4				present, unless disturb	ed or probler	natic	
5				Definitions of Vegetatio	n Strata:		
6.				Tree – Woody plants 3 i	n. (7.6 cm) or	more in o	diameter at
7				breast height (DBH), reg	gardless of h	eight.	
8.				Sapling/shrub - Woody	plants less tl	nan 3 in. E	OBH and
9.				greater than or equal to	o 3.28 ft (1 m) tall.	
10.				Herb – All herbaceous (non-woody)	plants, reg	gardless of
11.	_			size, and woody plants	less than 3.2	8 ft tall.	
12.				Woody vines – All wood	ly vines great	er than 3.	28 ft in
	5	= Total Cov	er	height.			
Woody Vine Stratum (Plot size: 30 ft)		-		Hydrophytic Vegetation	n Present?	′es 🟒 N	lo
1.							
2.				-			
3.				-			
4.				-			
		= Total Cov	er	-			
		-					
Remarks: (Include photo numbers here or on a separa	ite sheet.)						
A positive indication of hydrophytic vegetation was ob	served (>50	0% of domin	ant species	indexed as OBL, FACW, o	r FAC).		

Profile Des	cription: (Describe	to the d	lepth needed to d	locun	nent the i	ndicato	r or confirm the at	bsence of indic	cators.)
Depth	Matrix		Redox	Feat	ures				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	e	Remarks
0 - 3	10YR 2/1	100					Sapric M	uck	
3 - 9	10YR 2/1	50	10YR 5/2	50			Loamy Sa	and	
9 - 16	10YR 5/2	80	10YR 2/1	20			Loamy Sa	and	
16 - 18	10YR 6/2	100					Loamy Sa	and	
18+	Refusal						· · · · · · · · · · · · · · · · · · ·		Refusal due to rock.
			-					_	
								<u> </u>	
				—					
								· ·	
				—	·			<u> </u>	
								·	
		· ·						<u> </u>	
¹ Type: C = 0	Concentration, D =	Depleti	on, RM = Reduced	l Mat	rix, MS =	Masked	Sand Grains. ² Lo	ocation: PL = P	Pore Lining, M = Matrix.
Hydric Soil	Indicators:							Indicators fo	r Problematic Hydric Soils ³ :
Histoso	ol (A1)		Polyvalue Be	low S	Surface (S	8) (LRR	R, MLRA 149B)	2 cm Muo	ck (A10) (LRR K, L, MLRA 149B)
Histic E	pipedon (A2)		Thin Dark Su	rface	(S9) (LRR	R, MLR	A 149B)	Coast Pra	airie Redox (A16) (LRR K, L, R)
Black H	listic (A3)		Loamy Muck	y Mir	neral (F1)	(LRR K,	L)	5 cm Muo	cky Peat or Peat (S3) (LRR K, L, R)
Hydrog	en Sulfide (A4)		Loamy Gleye	d Ma	trix (F2)			Dark Surf	face (S7) (LRR K, L)
Stratifie	ed Layers (A5) ad Balaw Dark Surf	200 (11	Depleted Ma	trix (I	F3) co (F6)			Polyvalue	e Below Surface (S8) (LRR K, L)
Depiete	ark Surface (A12)	ace (AT		suna rk Su	rfaco (E7)			Thin Darl	k Surface (S9) (LRR K, L)
Sandy M	Mucky Mineral (S1)		Depieted Da	i k Su	11ace (F7) ns (F8)			Iron-Man	nganese Masses (F12) (LRR K, L, R)
Sandy (Gloved Matrix (S4)			.33101	13 (10)			Piedmon	t Floodplain Soils (F19) (MLRA 149B)
Sanuy C	Dedex (SE)							Mesic Sp	odic (TA6) (MLRA 144A, 145, 149B)
Sariuy i	d Matrix (SC)							Red Pare	nt Material (F21)
Surippe	u Matrix (S6)							Very Shal	llow Dark Surface (TF12)
Dark SU	uriace (S7) (LKK K, I	VILKA 14	9B)					Other (Ex	(plain in Remarks)
³ Indicators	of hydrophytic veg	getation	and wetland hyd	rolog	y must be	e preser	nt, unless disturbe	d or problema	itic.
Restrictive	Layer (if observed)	:							
	Type:		Rock			Hydric	Soil Present?		Yes 🟒 No
	Depth (inches):		18			-			
Remarks:				-					
A positive i	ndication of hydric	soil was	s observed.						

WETLAND DETERMINATION DATA FORM - Northcentral and Northeast Region

Project/Site: Tower Hi	II	Cit	y/County: Pelham, Ha	mpshire		Sampling Date: 2	2020-Mar-25	
Applicant/Owner: C	owls W.D., Inc.			State: MA		SamplingPoint: W	/-3-UPL	
Investigator(s): Kevi	n Ferguson, Gr	eg Russo	Section, Township, Range: NA					
Landform (hillslope, te	rrace, etc.):	Hillslope	Local r	elief (concave, conve	x, none):	Convex	Slope (%): 1 to 10	
Subregion (LRR or MLF	RA): LRR F	ł		Lat: 42.3657774208	Long:	-72.4310815954	Datum: WGS84	
Soil Map Unit Name:	Gloucester g	ravelly fine sandy l	oam, 8 to 15 percent s	lopes, very stony		NWI classificat	ti on: None	
Are climatic/hydrologic conditions on the site typical for this time of year? Yes 🖌 No (If no, explain in Remarks.)								
Are Vegetation,	Soil,	or Hydrology	significantly disturbed	? Are "Normal	Circums	tances" present?	Yes 🟒 No	
Are Vegetation,	Soil,	or Hydrology	naturally problematic	? (If needed, e	xplain an	y answers in Remar	ks.)	

SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.

Hydrophytic Vegetation Present?	Yes 🟒 No		
Hydric Soil Present?	Yes No 🟒	Is the Sampled Area within a Wetland?	Yes No 🟒
Wetland Hydrology Present?	Yes No 🟒	If yes, optional Wetland Site ID:	
Remarks: (Explain alternative procedures	s here or in a separate repo	rt)	
Covertype is UPL. Area is upland, not all	three wetland parameters a	ire present.	

HYDROLOGY

Wetland Hydrology Indicators:					
Primary Indicators (minimum of c	one is required; check all	Secondary Indicators (minimum of two required)			
 Surface Water (A1) High Water Table (A2) Saturation (A3) Water Marks (B1) Sediment Deposits (B2) 	Water- Aquati Marl D Hydro, Oxidiz	Stained Leaves (B9) c Fauna (B13) leposits (B15) gen Sulfide Odor (C1) ed Rhizospheres on Living Roots (C3)	 Surface Soil Cracks (B6) Drainage Patterns (B10) Moss Trim Lines (B16) Dry-Season Water Table (C2) Crayfish Burrows (C8) Saturation Visible on Aerial Imagery (C9) 		
 Drift Deposits (B3) Algal Mat or Crust (B4) Iron Deposits (B5) Inundation Visible on Aerial In Sparsely Vegetated Concave S 	Preser Recent Thin M nagery (B7) Other urface (B8)	nce of Reduced Iron (C4) t Iron Reduction in Tilled Soils (C6) Iuck Surface (C7) (Explain in Remarks)	 Stunted or Stressed Plants (D Geomorphic Position (D2) Shallow Aquitard (D3) Microtopographic Relief (D4) FAC-Neutral Test (D5) 	1)	
Field Observations:					
Surface Water Present?	Yes No 🟒	Depth (inches):			
Water Table Present?	Yes No 🟒	Depth (inches):	Wetland Hydrology Present?	Yes No 🟒	
Saturation Present?	Yes No 🟒	Depth (inches):			
(includes capillary fringe)					
Describe Recorded Data (stream	gauge, monitoring well, a	erial photos, previous inspections), if	available:		

Remarks:

The criteria for wetland hydrology is not met .

VEGETATION -- Use scientific names of plants.

Sampling Point: <u>W-3-UPL</u>

Tree Stratum (Plot size: <u>30 ft</u>)	Absolute	Dominant	Indicator	Dominance Test worksheet	: : Tk - t		
1 Tours consideration	% Cover	species?	Status			3	(A)
1. Isuga canadensis		Yes	FAC	Total Number of Dominant	Species –		
2. Quercus rubra	<u> </u>	NO No	FACU	Across All Strata:	-100000	5	(B)
s. Philus strobus	5	0/1	FACU	Percent of Dominant Specie	es That	~~~	() ()
4.				Are OBL, FACW, or FAC:	_	60	(A/B)
5				Prevalence Index workshee	et:		
6				- <u>Total % Cover of:</u>]	Multiply	<u>By:</u>
/				- OBL species	0	x 1 =	0
	40	= lotal Cov	er	FACW species	0	x 2 =	0
Sapling/Shrub Stratum (Plot size: <u>15 ft</u>)				FAC species	55	x 3 =	165
1. <u>Acer rubrum</u>	15	Yes	FAC	- FACU species	30	x 4 =	120
2. <u>Tsuga canadensis</u>	10	Yes	FAC	- UPL species	0	x 5 =	0
3. <i>Quercus rubra</i>	10	Yes	FACU	- Column Totals	85	(A)	285 (B)
4. <i>Kalmia latifolia</i>	5	No	FACU	Prevalence Index	= B/A =	3.4	
5					licators:		
6				- 1- Rapid Test for Hydr	onhytic Ve	opetation	
7				- / 2 - Dominance Test is	>50%	.50000	I
	40	= Total Cov	er	3 - Prevalence Index is	< 3 01		
Herb Stratum (Plot size: <u>5 ft</u>)				J - Morphological Ada	$3 \ge 3.0$	(Provido	supporting
1. Dendrolycopodium obscurum	5	Yes	FACU	- data in Remarks or on a set	narate she	(FTOVIUE	supporting
2				Problematic Hydroph	vtic Vegeta	ation ¹ (Ex	(plain)
3				- Indicators of hydric soil an	id wetland	hvdrolo	gy must be
4.				present, unless disturbed o	problem	natic	8,
5.				Definitions of Vegetation St	trata:		
6.				Tree – Woody plants 3 in. (7	7.6 cm) or i	more in o	diameter at
7.				breast height (DBH), regard	lless of hei	ight.	
8.		. <u> </u>		Sapling/shrub – Woody pla	nts less tha	an 3 in. [OBH and
9.				greater than or equal to 3.2	28 ft (1 m)	tall.	
10.				Herb – All herbaceous (non	n-woody) p	lants, re	gardless of
11.		·		size, and woody plants less	than 3.28	ft tall.	
12.				Woody vines – All woody vi	nes greate	er than 3.	.28 ft in
·	<u> </u>	= Total Cov	er	height.			
Woody Vine Stratum (Plot size: 30 ft)			C1	Hydrophytic Vegetation Pr	esent? Ye	es 🟒 N	lo
1				_			
2		·		-			
2				-			
3		·		-			
4		Table		-			
	0	= Iotal Cov	er				

Remarks: (Include photo numbers here or on a separate sheet.)

A positive indication of hydrophytic vegetation was observed (>50% of dominant species indexed as OBL, FACW, or FAC). Since eastern hemlock is officially listed with an indicator status of FACU by the most recent National Wetland Plant List, this status is listed on this form. However, to conform with the classification of eastern hemlock as a wetland indicator under the MA WPA, the calculations have bee adjusted such that this species is considered FAC.

Profile Description: (Describe to the depth needed to document the indicator or confirm the absence of indicators.)								
Depth	Matrix		Redox	Feat	ures			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Tex	ture Remarks
0 - 1	10YR 2/2	100					Hemi	c Loam
1 - 3	10YR 3/3	100					Sandy	y Loam
3 - 6	10YR 3/3	50	10YR 5/6	50			Sandy	y Loam
6 - 20	10YR 5/6	100					Loam	y Sand
1 Type: C = (Concentration D =	Depletio	n RM = Reduced	l Mat	rix MS =	Masked	Sand Grains	² Location: PL = Pore Lining M = Matrix
Hydric Soil	Indicators:	Depiction		iviac	11, 1015	Musicu	Sund Gruins.	Indicators for Problematic Hydric Soils ³
Histoso			Polyvalue Be		urface (S	(I RR I		
Histic F	ninedon (A2)		Thin Dark Su	rface	(S9) (I RE	R. MIR	A 149B)	2 cm Muck (A10) (LRR K, L, MLRA 149B)
Black H	istic (A3)		Loamv Muck	v Mir	eral (F1)	(LRR K. I	_)	Coast Prairie Redox (A16) (LRR K, L, R)
Hydrog	en Sulfide (A4)		Loamy Gleye	d Ma	trix (F2)	. ,		5 cm Mucky Peat or Peat (S3) (LRR K, L, R)
Stratifie	ed Layers (A5)		Depleted Ma	trix (F3)			Dark Surface (S7) (LRK N, L)
Deplete	ed Below Dark Surf	face (A11) Redox Dark S	Surfa	ce (F6)			Thin Dark Surface (S9) (I RR K 1)
Thick D	ark Surface (A12)		Depleted Da	rk Su	rface (F7))		Iron-Manganese Masses (F12) (I RR K. I. R)
Sandy N	Mucky Mineral (S1)		Redox Depre	essior	ıs (F8)			Piedmont Floodplain Soils (F19) (MI RA 149B)
Sandy (Gleyed Matrix (S4)							Mesic Spodic (TA6) (MLRA 144A, 145, 149B)
Sandy F	Redox (S5)							Red Parent Material (F21)
Strippe	d Matrix (S6)							Very Shallow Dark Surface (TF12)
Dark Su	urface (S7) (LRR R, I	MLRA 14	9B)					Other (Explain in Remarks)
³ Indicators	of hydrophytic veg	getation	and wetland hyd	rolog	y must b	e presen	t, unless distur	bed or problematic.
Restrictive	Layer (if observed)):						·
	Type:		None			Hydric	Soil Present?	Yes No 🟒
	Depth (inches):					-		
Remarks:	<u> </u>							
No positive	indication of hydr	ric soils v	vas observed.					

Appendix D: NRCS Soil Report

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for Hampden and Hampshire Counties, Massachusetts, Eastern Part

Tower Road, Pelham, MA

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	12
Map Unit Descriptions	12
Hampden and Hampshire Counties, Massachusetts, Eastern Part	14
316B—Scituate fine sandy loam, 3 to 8 percent slopes, very stony	14
441B—Gloucester gravelly fine sandy loam, 3 to 8 percent slopes,	
very stony	15
441C—Gloucester gravelly fine sandy loam, 8 to 15 percent slopes,	
very stony	17
442B—Gloucester gravelly fine sandy loam, 3 to 8 percent slopes,	
extremely stony	18
442C—Gloucester gravelly fine sandy loam, 8 to 15 percent slopes,	
extremely stony	20
442D—Gloucester gravelly fine sandy loam, 15 to 25 percent slopes,	
extremely stony	21
References	23

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

MAP LEGEND				MAP INFORMATION				
Area of In	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:25,000.				
Soils	Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points	00 0 0	Very Stony Spot Wet Spot Other Special Line Features	Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of				
Special ©	Blowout Borrow Pit	Water Fea	tures Streams and Canals	contrasting soils that could have been shown at a more detailed scale.				
※ ◇	Clay Spot Closed Depression	+++ ~	Rails Interstate Highways	Please rely on the bar scale on each map sheet for map measurements.				
*	Gravel Pit Gravelly Spot	~ ~	US Routes Major Roads	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)				
ي بلا	Lava Flow Marsh or swamp	Backgrou	Local Roads nd Aerial Photography	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more				
☆ © ○	Mine or Quarry Miscellaneous Water Perennial Water			accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.				
× +	Rock Outcrop Saline Spot			Soil Survey Area: Hampden and Hampshire Counties, Massachusetts, Eastern Part Survey Area Data: Version 15, Jun 10, 2020				
÷: •	Sandy Spot Severely Eroded Spot Sinkhole			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.				
¢ Ø	Slide or Slip Sodic Spot			Date(s) aerial images were photographed: Apr 9, 2011—May 12, 2011 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background				

MAP LEGEND

MAP INFORMATION

imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

	-		
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
316B	Scituate fine sandy loam, 3 to 8 percent slopes, very stony	7.8	12.0%
441B	Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, very stony	31.1	47.9%
441C	Gloucester gravelly fine sandy loam, 8 to 15 percent slopes, very stony	6.2	9.6%
442B	Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, extremely stony	10.4	16.0%
442C	Gloucester gravelly fine sandy loam, 8 to 15 percent slopes, extremely stony	3.1	4.8%
442D	Gloucester gravelly fine sandy loam, 15 to 25 percent slopes, extremely stony	6.3	9.8%
Totals for Area of Interest	·	64.9	100.0%

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a

given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Hampden and Hampshire Counties, Massachusetts, Eastern Part

316B—Scituate fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: vhy4 Elevation: 360 to 1,200 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Scituate and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scituate

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Concave Parent material: Friable coarse-loamy eolian deposits over dense sandy lodgment till derived from granite and gneiss

Typical profile

H1 - 0 to 5 inches: fine sandy loam H2 - 5 to 27 inches: fine sandy loam H3 - 27 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: 18 to 46 inches to densic material
Drainage class: Moderately well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.06 to 0.20 in/hr)
Depth to water table: About 18 to 36 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 3.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: C/D Ecological site: F144AY037MA - Moist Dense Till Uplands Hydric soil rating: No

Minor Components

Paxton

Percent of map unit: 4 percent *Hydric soil rating:* No

Canton

Percent of map unit: 4 percent Hydric soil rating: No

Ridgebury

Percent of map unit: 4 percent Landform: Depressions Hydric soil rating: Yes

Woodbridge

Percent of map unit: 4 percent Hydric soil rating: No

Montauk

Percent of map unit: 4 percent Hydric soil rating: No

441B—Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, very stony

Map Unit Setting

National map unit symbol: vht9 Elevation: 310 to 1,150 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Gloucester and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gloucester

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable sandy eolian deposits over friable sandy and gravelly basal till derived from granite and gneiss

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam

H2 - 5 to 15 inches: gravelly sandy loam

H3 - 15 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Ecological site: F144AY032NH - Dry Till Uplands Hydric soil rating: No

Minor Components

Essex

Percent of map unit: 5 percent Hydric soil rating: No

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Charlton

Percent of map unit: 5 percent Hydric soil rating: No

Scituate

Percent of map unit: 2 percent Hydric soil rating: No

Ridgebury

Percent of map unit: 2 percent Landform: Depressions Hydric soil rating: Yes

Woodbridge

Percent of map unit: 1 percent Hydric soil rating: No
441C—Gloucester gravelly fine sandy loam, 8 to 15 percent slopes, very stony

Map Unit Setting

National map unit symbol: vhtd Elevation: 210 to 1,120 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Gloucester and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gloucester

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable sandy eolian deposits over friable sandy and gravelly basal till derived from granite and gneiss

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam

- H2 5 to 15 inches: gravelly sandy loam
- H3 15 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 1.6 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 6s Hydrologic Soil Group: A Hydric soil rating: No

Minor Components

Charlton

Percent of map unit: 5 percent Hydric soil rating: No

Essex

Percent of map unit: 5 percent Hydric soil rating: No

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Scituate

Percent of map unit: 2 percent Hydric soil rating: No

Woodbridge

Percent of map unit: 2 percent Hydric soil rating: No

Ridgebury

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

442B—Gloucester gravelly fine sandy loam, 3 to 8 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: vhtg Elevation: 300 to 1,210 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Gloucester and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gloucester

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex *Parent material:* Friable sandy eolian deposits over friable sandy and gravelly basal till derived from granite and gneiss

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam
H2 - 5 to 15 inches: gravelly sandy loam
H3 - 15 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F144AY032NH - Dry Till Uplands Hydric soil rating: No

Minor Components

Montauk

Percent of map unit: 4 percent Hydric soil rating: No

Charlton

Percent of map unit: 4 percent Hydric soil rating: No

Essex

Percent of map unit: 4 percent Hydric soil rating: No

Scituate

Percent of map unit: 3 percent Hydric soil rating: No

Ridgebury

Percent of map unit: 3 percent Landform: Depressions Hydric soil rating: Yes

Woodbridge

Percent of map unit: 2 percent Hydric soil rating: No

442C—Gloucester gravelly fine sandy loam, 8 to 15 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: vhtj Elevation: 300 to 1,230 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Gloucester and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gloucester

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex Parent material: Friable sandy eolian deposits over friable sandy and gravelly basal till derived from granite and gneiss

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam

- H2 5 to 15 inches: gravelly sandy loam
- H3 15 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 8 to 15 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F144AY032NH - Dry Till Uplands Hydric soil rating: No

Minor Components

Charlton

Percent of map unit: 5 percent Hydric soil rating: No

Essex

Percent of map unit: 5 percent Hydric soil rating: No

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Scituate

Percent of map unit: 2 percent Hydric soil rating: No

Woodbridge

Percent of map unit: 2 percent Hydric soil rating: No

Ridgebury

Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes

442D—Gloucester gravelly fine sandy loam, 15 to 25 percent slopes, extremely stony

Map Unit Setting

National map unit symbol: vhtn Elevation: 280 to 1,200 feet Mean annual precipitation: 32 to 50 inches Mean annual air temperature: 45 to 50 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Gloucester and similar soils: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Gloucester

Setting

Landform: Hills Landform position (two-dimensional): Backslope Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Convex

Parent material: Friable sandy eolian deposits over friable sandy and gravelly basal till derived from granite and gneiss

Typical profile

H1 - 0 to 5 inches: gravelly fine sandy loam

H2 - 5 to 15 inches: gravelly sandy loam

H3 - 15 to 65 inches: very gravelly loamy sand

Properties and qualities

Slope: 15 to 25 percent
Surface area covered with cobbles, stones or boulders: 9.0 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Ecological site: F144AY032NH - Dry Till Uplands Hydric soil rating: No

Minor Components

Montauk

Percent of map unit: 5 percent Hydric soil rating: No

Charlton

Percent of map unit: 5 percent Hydric soil rating: No

Essex

Percent of map unit: 5 percent Hydric soil rating: No

Woodbridge

Percent of map unit: 3 percent Hydric soil rating: No

Scituate

Percent of map unit: 2 percent Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

Appendix E: USGS StreamStats Report

StreamStats Report: Tower Road S-1

 Region ID:
 MA

 Workspace ID:
 MA20201002034736793000

 Clicked Point (Latitude, Longitude):
 42.37170, -72.43518

 Time:
 2020-10-01 23:47:52 -0400

Basin Characteristics

Parameter

Code	Parameter Description	Value	Unit
DRNAREA	Area that drains to a point on a stream	0.0396	square miles
ELEV	Mean Basin Elevation	1080	feet
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	0	percent
BSLDEM250	Mean basin slope computed from 1:250K DEM	9.915	percent
DRFTPERSTR	Area of stratified drift per unit of stream length	-100000	square mile per mile

Parameter Code	Parameter Description	Value	Unit
		value	
MAREGION	Region of Massachusetts U for Eastern 1 for Western	1	dimensionless
BSLDEM10M	Mean basin slope computed from 10 m DEM	10.221	percent
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	0	percent
FOREST	Percentage of area covered by forest	100	percent
ACRSDFT	Area underlain by stratified drift	0	square miles
CENTROIDX	Basin centroid horizontal (x) location in state plane coordinates	123701.8	meters
CENTROIDY	Basin centroid vertical (y) location in state plane units	902328.4	meters
CRSDFT	Percentage of area of coarse-grained stratified drift	0	percent
CSL10_85	Change in elevation divided by length between points 10 and 85 percent of distance along main channel to basin divide - main channel method not known	498	feet per mi
LAKEAREA	Percentage of Lakes and Ponds	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	0	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0	percent
LFPLENGTH	Length of longest flow path	0.84	miles
MAXTEMPC	Mean annual maximum air temperature over basin area, in degrees Centigrade	13.2	feet per mi
OUTLETX	Basin outlet horizontal (x) location in state plane coordinates	122975	feet
OUTLETY	Basin outlet vertical (y) location in state plane coordinates	902775	feet
PRECPRIS00	Basin average mean annual precipitation for 1971 to 2000 from PRISM	48.8	inches
STRMTOT	total length of all mapped streams (1:24,000- scale) in the basin	0	miles
WETLAND	Percentage of Wetlands	0	percent

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0396	square miles	0.16	512
ELEV	Mean Basin Elevation	1080	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	0	percent	0	32.3

Peak-Flow Statistics Disclaimers[Peak Statewide 2016 5156]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

Statistic	Value	Unit
2 Year Peak Flood	5.03	ft^3/s
5 Year Peak Flood	9.03	ft^3/s
10 Year Peak Flood	12.5	ft^3/s
25 Year Peak Flood	17.8	ft^3/s
50 Year Peak Flood	22.4	ft^3/s
100 Year Peak Flood	27.6	ft^3/s
200 Year Peak Flood	33.3	ft^3/s
500 Year Peak Flood	41.9	ft^3/s

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]						
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	0.0396	square miles	1.61	149	

https://streamstats.usgs.gov/ss/

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
BSLDEM250	Mean Basin Slope from 250K DEM	9.915	percent	0.32	24.6	
DRFTPERSTR	Stratified Drift per Stream Length	-100000	square mile per mile	0	1.29	
MAREGION	Massachusetts Region	1	dimensionless	0	1	
Low-Flow Statistics Flow Report [Statewide Low Flow WRIR00 4135]						
Statistic	Valu	Je	Un	it		

Low-Flow Statistics Citations

Sauer, Vernon B.; Thomas, W. O., Jr.; Stricker, V. A.; Wilson, K. V.,1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p. (http://pubs.er.usgs.gov/publication/wsp2207)

()

10/1/2020

Anderson, B.T.,2020, Magnitude and frequency of floods in Alabama, 2015: U.S. Geological Survey Scientific Investigations Report 2020–5032, 148 p.

(https://doi.org/10.3133/sir20205032)

Hedgecock, T.S.,2004, Magnitude and Frequency of Floods on Small Rural Streams in Alabama: U. S. Geological Survey Scientific Investigations Report 2004-5135, 10 p. (http://pubs.usgs.gov/sir/2004/5135/)

Hedgecock, T.S.,2010, Magnitude and Frequency of Floods for Urban Streams in Alabama, 2007: U.S Geological Survey Scientific Investigations Report 2010-5012, 17p. (https://pubs.usgs.gov/sir/2010/5012/)

Wiley, J.B., and Curran, J.H.,2003, Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p. (http://water.usgs.gov/pubs/wri/wri034114/pdf/wri034114_v1.10.pdf)

Brabets, Timothy P.,1996, Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information: U.S. Geological Survey Water-Resources Investigations Report 96-4001, 98 p. (https://pubs.usgs.gov/wri/wri96-4001/)

Curran, J.H., Barth, N.A., Veilleux, A.G., and Ourso, R.T.,2016, Estimating Flood Magnitude and Frequency at Gaged and Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada, Based on Data through Water Year 2012: U.S. Geological Survey Scientific Investigations Report 2016-5024, 47 p.

(http://dx.doi.org/10.3133/sir20165024http://dx.doi.org/10.3133/sir20165024) Southard, R.E.,2010, Estimation of the Magnituude and Frequency of Floods in Urban Basins in Missouri: U.S. Geological Survey Scientific Investigations Report 2010-5073, 27 p. (http://pubs.usgs.gov/sir/2010/5073/)

Waltemeyer, S.D., Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico: U. S. Geological Survey Scientific Investigations Report2006-5306, 42 p. (http://pubs.usgs.gov/sir/2006/5306/)

Paretti, N.V., Kennedy, J.R., Turney, L.A., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peak-flow data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2014-5211, 61 p., http://dx.doi.org/10.3133/sir20145211.

(http://pubs.usgs.gov/sir/2014/5211/)

Kennedy, J.R., Paretti, N.V., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona: U.S. Geological Survey Scientific Investigations Report 2014–5109, 35 p.

(http://pubs.usgs.gov/sir/2014/5109/)

Funkhouser, J.E., Eng, Ken, and Moix, M.W.,2008, Low-Flow Characteristics and Regionalization of Low Flow Characteristics for Selected Streams in Arkansas: U. S. Geological Survey Scientific Investigations Report 2008-5065, 161 p.

(http://pubs.usgs.gov/sir/2008/5065/pdf/SIR2008-5065.pdf)

Breaker, B.K.,2015, Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas: U.S. Geological Survey Scientific Investigations Report 2015-5031, 25 p. (http://pubs.usgs.gov/sir/2015/5031/) Wagner, D.M., Krieger, J.D., and Veilleux, A.G.,2016, Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013: U.S. Geological Survey Scientific Investigations Report 2016-5081, 136 p. (http://dx.doi.org/10.3133/sir20165081)

Thomas, B.E, Hjalmarson, H.W., and Waltemeyer, S.D.,1997, Methods for Estimating Magnitude and Frequency of Floods in the Southwestern United States: U.S. Water-Supply Paper 2433, 196 p. (http://pubs.er.usgs.gov/publication/wsp2433)

Gotvald, A.J., Barth, N.A., Veilleux, A.G., and Parrett, Charles,2012, Methods for determining magnitude and frequency of floods in California, based on data through water year 2006: U.S. Geological Survey Scientific Investigations Report 2012–5113, 38 p., 1 pl. (http://pubs.usgs.gov/sir/2012/5113/)

Sanocki, C.A., Williams-Sether, T., Steeves, P.A., and Christensen, V.G.,2019, Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in the Binational U.S. and Canadian Lake of the Woods-Rainy River Basin Upstream from Kenora, Ontario, Canada, Based on Data through Water Year 2013 : U.S. Geological Survey Scientific Investigations Report 2019–5012, 17 p. (https://doi.org/10.3133/sir20195012) Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of

Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099) Ahearn, E.A.,2004, Regression Equations for Estimating Flood Flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year Recurrence Intervals in Connecticut: U.S. Geological Survey SRI 2004-5160, 62 p. (http://water.usgs.gov/pubs/sir/2004/5160/)

Ahearn, E.A.,2010, Regional regression equations to estimate flow-duration statistics in Connecticut: U. S. Geological Survey Scientific Investigations Report 2010-5052, 45 p. (http://pubs.usgs.gov/sir/2010/5052/)

Ries, K.G., III, and Dillow, J.J.A.,2006, Magnitude and frequency of floods in Delaware: Scientific Investigations Report 2006-5146, 59 p. (http://pubs.usgs.gov/sir/2006/5146/)

Carpenter, D.H., and Hayes, D.C.,1996, Low-flow characteristics of streams in Maryland and Delaware: U.S. Geological Survey Water-Resources Investigations Report 94-4020, 113 p., 10 plates (https://pubs.er.usgs.gov/publication/wri944020)

Franklin, M.A. and Losey, G.T.,1984, Magnitude and Frequency of Floods from Urban Streams in Leon County, Florida: U.S. Geological Survey Water-Resources Investigations Report 84-4004, 37 p. (http://pubs.er.usgs.gov/publication/wri844004)

Lopez, M.A. and Woodham, W. M.,1983, Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida: U.S. Geological Survey Water-Resources Investigations Report 82-42, 52 p.

(https://pubs.er.usgs.gov/publication/wri8242)

Rumenik, R. P.; Grubbs, J. W.,1996, Methods for estimating low-flow characteristics of ungaged streams in selected areas, northern Florida: U.S. Geological Survey Water-Resources Investigations Report 96-4124, 28 p.

(https://doi.org/10.3133/wri964124https://doi.org/10.3133/wri964124)

Verdi, R.J., and Dixon, J.F.,2011, Magnitude and Frequency of Floods for Rural Streams in Florida, 2006: U.S. Geological Survey Scientific Investigations Report 2011–5034, 69 p., 1 pl. (http://pubs.usgs.gov/sir/2011/5034/)

Inman, E.J.,2000, Lagtime relations for urban streams in Georgia: U.S. Geological Survey Water-Resources Investigations Report 00-4049, 12 p. (https://pubs.usgs.gov/wri/wri00-4049/)

Gotvald, A.J., Feaster, T.D., and Weaver, J.C.,2009, Magnitude and Frequency of Rural Floods in the Southeastern United States, 2006: Volume 1, Georgia: U.S. Geological Survey Scientific Investigations Report 2009-5043, 120 p. (http://pubs.usgs.gov/sir/2009/5043/) Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/) Gotvald, A.J.,2017, Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia: U.S. Geological

Survey Scientific Investigations Report 2017-5001, 25 p.

(https://doi.org/10.3133/sir20175001)

Oki, D.S., Rosa, S.N., and Yeung, C.W.,2010, Flood-frequency estimates for streams on Kaua'i, O'ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i: U.S. Geological Survey Scientific Investigations Report 2010-5035, 121 p. (http://pubs.usgs.gov/sir/2010/5035/) Gingerich, S.B.,2005, Median and Iow-flow characteristics for streams under natural and diverted conditions, northeast Maui, Hawaii: U.S. Geological Survey Scientific Investigations Report 2004-5262, 72 p. (http://pubs.usgs.gov/sir/2004/5262/pdf/sir2004-5262.pdf)

Fontaine, R.A., Wong, M.F., Matsuoka, Iwao,1992, Estimation of Median Streamflows at Perennial Stream Sites in Hawaii: U.S. Geological Survey Water-Resources Investigations Report 92-4099, 37 p. (http://pubs.er.usgs.gov/usgspubs/wri/wri924099)

Hortness, J.E.,2006, Estimating Low-Flow Frequency Statistics for Unregulated Streams in Idaho: U.S. Geological Survey Scientific Investigations Report 2006-5035, 31 p. (http://pubs.usgs.gov/sir/2006/5035/pdf/sir20065035.pdf)

Wood, M.S., Fosness, R.L., Skinner, K.D., and Veilleux, A.G.,2016, Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho: U.S. Geological Survey Scientific Investigations Report 2016–5083, 56 p. (http://dx.doi.org/10.3133/sir20165083)

Hortness, J.E., and Berenbrock, Charles,2001, Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Idaho: U.S. Geological Survey Water-Resources Investigations Report 01-4093, 36 p. (https://pubs.er.usgs.gov/publication/wri014093) Over, T.M., Riley, J.D., Sharpe, J.B., and Arvin, Donald,2014, Estimation of regional flowduration curves for Indiana and Illinois: U.S. Geological Survey Scientific Investigations Report 2014-5177, 24 p. and additional downloads, Tables 2-5, 8-13, and 18 (http://dx.doi.org/10.3133/sir20145177)

Soong, D.T., Ishii, A.L., Sharpe, J.B., and Avery, C.F.,2004, Estimating Flood-Peak Discharge Magnitudes and Frequencies for Rural Streams in Illinois, U.S. Geological Survey Scientific Investigations Report 2004-5103. 147 p.

(https://pubs.er.usgs.gov/publication/sir20045103)

Over, T.M., Saito, R.J., Veilleux, A.G., Sharpe, J.B., Soong, D.T., and Ishii, A.L.,2016, Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois: U.S. Geological Survey Scientific Investigations Report 2016-5050, 50 p. (http://dx.doi.org/10.3133/sir20165050)

Rao, A.R.,2005, Flood-Frequency Relationships for Indiana: Joint Transportation Research Program, Purdue University, FHWA/IN/JTRP-2005/18, 14 p.

(https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1746&context=jtrp) Robinson, B.A.,2013, Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013–5078, 33 p. (http://pubs.usgs.gov/sir/2013/5078/)

Martin, G.R., Fowler, K.K., and Arihood, L.D.,2016, Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5102, 45 p. (http://dx.doi.org/10.3133/sir20165102)

Arihood, L.D.; Glatfelter, D.R.,1991, Method for estimating low-flow characteristics of ungaged streams in Indiana: U.S. Geological Survey Water-Supply Paper 2372, 19 p. (https://pubs.er.usgs.gov/publication/wsp2372)

Eash, D.A., and Barnes, K.K.,2012, Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa: U.S. Geological Survey Scientific Investigations Report 2012-5171, 99 p. (http://pubs.usgs.gov/sir/2012/5171/)

Linhart, S.M., Nania, J.F., Sanders, C.L., Jr., and Archfield, S.A.,2012, Computing daily mean streamflow at ungaged locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods: U.S. Geological Survey Scientific Investigations Report 2012–5232, 50 p. (http://pubs.usgs.gov/sir/2012/5232/) Eash, D.A., Barnes, K.K., and Veilleux, A.G.,2013, Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year

2010: U.S. Geological Survey Scientific Investigations Report 2013-5086, 63 p. with a (http://pubs.usgs.gov/sir/2013/5086/)

Eash, D.A.,2015, Comparisons of estimates of annual exceedance-probability discharges for small drainage basins in Iowa, based on data through water year 2013: U.S. Geological Survey Scientific Investigations Report 2015–5055, 37 p.

(http://dx.doi.org/10.3133/sir20155055.)

Eash, D.A., Barnes, K.K., and O'Shea, P.S.,2016, Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014: U.S. Geological Survey Scientific Investigations Report 2016-5111, 32 p. (http://dx.doi.org/10.3133/sir20165111)

Perry, C.A., Wolock, D.M., and Artman, J.C.,2004, Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations: U.S. Geological Survey

Scientific Investigations Report 2004-5033, 651 p. (http://water.usgs.gov/pubs/sir/2004/5033/pdf/sir2004.5033front.pdf) Painter, C.C., Heimann, D.C., and Lanning-Rush, J.L., 2017, Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015: U.S. Geological Survey Scientific Investigations Report 2017-5063, 20 p. (https://doi.org/10.3133/sir20175063) Hodgkins, G.A. and Martin, G.R., 2003, Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 03-4180, 69 p. (http://water.usgs.gov/pubs/wri/wri034180/) Martin, G.R., Ruhl, K.J., Moore, B.L., and Rose, M.F., 1997, Estimation of Peak-Discharge Frequency of Urban Streams in Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 97-4219 (http://pubs.er.usgs.gov/publication/wri974219) Martin, G.R., 2002, Estimating Mean Annual Streamflow of Rural Streams in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 02-4206, 35 p. (http://pubs.er.usgs.gov/publication/wri024206) Martin, G.R., and Arihood, L.D., 2010, Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky: U.S. Geological Survey Scientific Investigations Report 2010-5217, 83 p. (http://pubs.usgs.gov/sir/2010/5217/) Martin, G. R. and Ruhl, K. J., 1993, Regionalization of harmonic-mean streamflows in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 92-4173, 47 p., 1 pl. (http://pubs.er.usgs.gov/publication/wri924173StreamStats_KY_20140226.mdb) Brockman, R. A., Agouridis, C. T., Workman, S. R., Ormsbee, L. E., Fogle, A. W., 2012, Bankfull regional curves for the Inner and Outer Bluegrass Regions of Kentucky, Journal of the American Water Resources Association, v. 48, no. 2, p. 391-406. (http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2011.00621.x/full) TR No.70, (2004) Regionalized Regression Equations for Estimating Low-Flow **Characteristics for selected Louisiana Streams** (http://la.water.usgs.gov/publications/pdfs/TR70.pdf) TR No.60, (1998) Floods in Louisiana, Magnitude and Frequency, Fifth Edition (not available) Landers, M.N., 1985, Floodflow Frequency of Streams in the Alluvial Plain of the Lower Mississippi River in Mississippi, Arkansas, and Louisiana: U.S. Geological Survey Water-Resources Investigations Report 85-4150, 21 p. (http://pubs.er.usgs.gov/publication/wri854150) Lombard, P. J., Tasker, G. D., and Nielsen, M. G., 2003, August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine: U.S. Geological Survey Water-Resources Investigations Report 03-4225, 20 p. (http://water.usgs.gov/pubs/wri/wri034225/pdf/wrir03-4225.pdf) Lombard, P. J., 2004, August Median Streamflow on Ungaged Streams in Eastern Coastal Maine: U.S. Geological Survey Scientific Investigations Report 2004-5157, 15 p. (http://water.usgs.gov/pubs/sir/2004/5157/) Dudley, R.W., 2004, Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2004-5026, 22 p. (http://water.usgs.gov/pubs/sir/2004/5026/pdf/sir2004-5026.pdf) Hodgkins, G. A., 1999, Estimating the Magnitude of Peak Flows for Streams in Maine for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 99-4008, 45 p. (https://pubs.er.usgs.gov/publication/wri994008) Dudley, R.W., 2004, Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine: U.S. Geological Survey Scientific Investigations Report 2004-5042, 30 p

(http://pubs.usgs.gov/sir/2004/5042/pdf/sir2004-5042.pdf)

Lombard, P.J.,2010, June and August median streamflows estimated for ungaged streams in southern Maine: U.S. Geological Survey Scientific Investigations Report 2010-5179, 16 p. (http://pubs.usgs.gov/sir/2010/5179/pdf/sir2010-5179.pdf)

Lombard, P.J., and Hodgkins, G.A.,2015, Peak flow regression equations for small, ungaged streams in Maine- Comparing map-based to field-based variables: U.S. Geological Survey Scientific Investigations Report 2015-5049, 12 p. (http://dx.doi.org/10.3133/sir20155049) Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151)

Thomas, Jr., W.O. and Moglen, G.E.,2010, An Update of Regional Regression Equations for Maryland, Appendix 3 in Application of Hydrologic Methods in Maryland, Third Edition, September 2010: Maryland State Highway Administration and Maryland Department of the Environment, 38 p.

(http://gishydro.eng.umd.edu/HydroPanel/hydrology_panel_report_3rd_edition_final.pdf) Chaplin, J.J.,2005, Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland: U.S. Geological Survey Scientific Investigations Report 2005-5147, 34 p.

(https://pubs.usgs.gov/sir/2005/5147/SIR2005-5147.pdf)

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p.

(http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Holtschlag, D.J. and Croskey, H.M., 1984, Statistical Methods for Estimating Flow Characteristics of Michigan Streams: U.S. Geological Survey Water-Resources Investigations Report 84-4207, 80 p. (https://pubs.er.usgs.gov/publication/wri844207) Lorenz, D.L., Sanocki, C.A., and Kocian, M.J., 2009, Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005: U.S. Geological Survey Scientific Investigations Report 2009-5250, 54 p. (http://pubs.usgs.gov/sir/2009/5250/pdf/sir2009-5250.pdf)

Ziegeweid, J.R., Lorenz, D.L., Sanocki, C.A., and Czuba, C.R.,2015, Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota: U.S. Geological Survey Scientific Investigations Report 2015–5170, 23 p. (http://dx.doi.org/10.3133/sir20155170)

Anderson, B.T.,2018, Flood frequency of rural streams in Mississippi, 2013: U.S. Geological Survey Scientific Investigations Report 2018–5148, 12 p.

(https://doi.org/10.3133/sir20185148)

Southard, R.E., and Veilleux, A.G.,2014, Methods for estimating annual exceedanceprobability discharges and largest recorded floods for unregulated streams in rural

Missouri: U.S. Geological Survey Scientific Investigations Report 2014–5165, 39 p. (http://pubs.usgs.gov/sir/2014/5165/)

Southard, R.E.,2013, Computed statistics at streamgages, and methods for estimating lowflow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri: U.S. Geological Survey Scientific Investigations Report 2013-5090, 28 p. (http://pubs.usgs.gov/sir/2013/5090/) Parrett, Charles and Hull, J.A.,1985, A method for estimating mean and low flows of streams in national forests of Montana: U.S. Geological Survey Water-Resources Investigations Report 85-4071, 13 p. (https://pubs.er.usgs.gov/publication/wri854071) Parrett, Charles and Cartier, K.D. ,1999, Methods for estimating monthly streamflow characteristics at ungaged sites in western Montana: U. S. Geological Survey Water-Supply Paper 2365, 30 p. (http://pubs.er.usgs.gov/publication/wsp2365)

Parrett, Charles and Johnson, D.R.,2004, Methods for Estimating Flood Frequency in Montana Based on Data through Water Year 1998: U.S. Geological Survey Water-Resources Investigations Report 03-4308, 102 p. (http://water.usgs.gov/pubs/wri/wri03-4308/) Sando, Roy, Sando, S.K., McCarthy, P.M., and Dutton, D.M.,2016, Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: U.S. Geological Survey Scientific Investigations Report 2015-5019-F, 30 p. (https://doi.org/10.3133/sir20155019)

McCarthy, P.M., Sando, Roy, Sando, S.K., and Dutton, D.M.,2016, Methods for estimating streamflow characteristics at ungaged sites in western Montana based on data through water year 2009: U.S. Geological Survey Scientific Investigations Report 2015–5019–G, 19 p. (https://doi.org/10.3133/sir20155019)

Soenksen, P.J., Miller, L.D., Sharpe, J.B. and Watton, J.R.,1999, Peak-Flow Frequency Relations and Evaluation of the Peak-Flow Gaging Network in Nebraska: U. S. Geological Survey Water-Resources Investigations Report 99-4032, 48 p,

(https://pubs.er.usgs.gov/publication/wri994032)

Flynn, R.H. and Tasker, G.D.,2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams: U.S.Geological Survey Scientific Investigations Report 02-4298, 66 p. (http://pubs.water.usgs.gov/wrir02-4298)

Olson, S.A.,2009, Estimation of flood discharges at selected recurrence intervals for streams in New Hampshire: U.S.Geological Survey Scientific Investigations Report 2008-5206, 57 p. (http://pubs.usgs.gov/sir/2008/5206/)

Flynn, R.H. and Tasker, G.D.,2004, Generalized Estimates from Streamflow Data of Annual and Seasonal Ground-Water-Recharge Rates for Drainage Basins in New Hampshire, U.S. Geological Survey Scientific Investigations Report 2004-5019, 67 p.

(http://pubs.usgs.gov/sir/2004/5019/http://pubs.usgs.gov/sir/2004/5019/)

Watson, K.M.,and Schopp, R.D.,2009, Methodology for estimation of flood magnitude and frequency for New Jersey streams, U.S. Geological Survey Scientific Investigations Report 2009-5167, 51 p. (http://pubs.usgs.gov/sir/2009/5167/)

Watson, K.M., and McHugh, A.R.,2014, Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p. (baseline, period-or-record statistics)

(http://dx.doi.org/10.3133/sir20145004StreamStatsDB\2019_12_13_DataSource_table.xlsxDa Waltemeyer, S.D.,2002, Analysis of the magnitude and frequency of the 4-day annual low flow and regression equations for estimating the 4-day, 3-year low flow frequency at ungaged sites on unregulated streams in New Mexico: U. S. Geological Survey Water-

Resources Investigations Report 01-4271, 22 p.

(https://pubs.usgs.gov/wri/2001/4271/wrir014271.pdf)

Waltemeyer, S.D.,2008, Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas: U.S. Geological Survey Scientific Investigations Report 2008-5119, 105 p.

(http://pubs.usgs.gov/sir/2008/5119/)

Lumia, Richard, Freehafer, D.A., and Smith, M.J.,2006, Magnitude and Frequency of Floods in New York: U.S. Geological Survey Scientific Investigations Report 2006–5112, 152 p. (http://pubs.usgs.gov/sir/2006/5112/)

Stedfast, D.A., 1984, Evaluation of Six Methods for Estimating Magnitude and Frequency of Peak Discharges on Urban Streams in New York: U. S. Geological Survey Water-Resources Investigations Report 84-4350, 24 p. (https://pubs.usgs.gov/wri/1984/4350/report.pdf) Mulvihill, C.I., Baldigo, B.P., Miller, S.J., and DeKoskie, Douglas, 2009, Bankfull Discharge and Channel Characteristics of Streams in New York State: U.S. Geological Survey Scientific Investigations Report 2009-5144, 51 p. (http://pubs.usgs.gov/sir/2009/5144/) Barnes, C. R., 1986, Method for estimating low-flow statistics for ungaged streams in the lower Hudson River Basin, New York: U. S. Geological Survey Water-Resources Investigations Report 85-4070, 22 p. (https://pubs.er.usgs.gov/publication/wri854070) Randall, A.D., 2010, Low flow of streams in the Susquehanna River basin of New York: U.S.

Geological Survey Scientific Investigations Report 2010-5063, 57 p.

(http://pubs.usgs.gov/sir/2010/5063/http://pubs.usgs.gov/sir/2010/5063/)

Gazoorian, C.L.,2015, Estimation of unaltered daily mean streamflow at ungaged streams of New York, excluding Long Island, water years 1961–2010: U.S. Geological Survey Scientific Investigations Report 2014–5220, 29 p. (https://pubs.usgs.gov/sir/2014/5220/) Giese, G. L. and Mason, R.R., Jr.,1993, Low-flow characteristics of streams in North Carolina: U.S. Geological Survey Water-Supply Paper 2403, 29 p.

(https://pubs.er.usgs.gov/publication/wsp2403)

Mason, Robert R., Jr.; Fuste, Luis A.; King, Jeffrey N.; Thomas, Wilbert O., Jr.,2002, The National Flood-Frequency Program -- Methods for Estimating Flood Magnitude and Frequency in Rural and Urban Areas in North Carolina, 2001: U.S. Geological Survey Fact Sheet 007-00, 4 p. (http://pubs.er.usgs.gov/publication/fs00700)

Weaver, J.C., Feaster, T.D., and Gotvald, A.J.,2009, Magnitude and frequency of rural floods in the Southeastern United States, through 2006–Volume 2, North Carolina: U.S. Geological Survey Scientific Investigations Report 2009–5158, 111 p.

(http://pubs.usgs.gov/sir/2009/5158/)

Williams-Sether, T.,2015, Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009: U.S. Geological Survey Scientific Investigations Report 2015–5096, 12 p. (http://dx.doi.org/10.3133/sir20155096)

Koltun, G.F., Kula, S.P., and Puskas, B.M.,2006, A Streamflow Statistics (StreamStats) Web Application for Ohio: U.S. Geological Survey Scientific Investigations Report 2006-5312, 62 p. (http://pubs.usgs.gov/sir/2006/5312/)

Sherwood, J.M.,1994, Estimation of peak-frequency relations, flood hydrographs, and volume-duration-frequency relations of ungaged small urban streams in Ohio: U. S. Geological Survey Water-Supply Paper 2432, 42 p.

(https://pubs.er.usgs.gov/publication/wsp2432)

Koltun, G. F., and Whitehead, M. T.,2002, Techniques for Estimating Selected Streamflow Characteristics of Rural, Unregulated Streams in Ohio: U. S. Geological Survey Water-Resources Investigations Report 02-4068, 50 p

(https://pubs.er.usgs.gov/publication/wri024068)

Koltun, G. F., and Schwartz, Ronald R.,1987, MULTIPLE-REGRESSION EQUATIONS FOR ESTIMATING LOW FLOWS AT UNGAGED STREAM SITES IN OHIO: U.S. Geological Survey Water-Resources Investigations Report 86-4354, 39 p.

(http://pubs.er.usgs.gov/usgspubs/wri/wri864354)

Koltun, G.F., and Kula, S.P.,2013, Methods for estimating selected low-flow statistics and development of annual flow-duration statistics for Ohio: U.S. Geological Survey Scientific Investigations Report 2012–5138, 195 p. (http://pubs.usgs.gov/sir/2012/5138/) Koltun, G.F.,2019, Flood-frequency estimates for Ohio streamgages based on data through water year 2015 and techniques for estimating flood-frequency characteristics of rural,

unregulated Ohio streams: U.S. Geological Survey Scientific Investigations Report 2019– 5018, xx p. (https://dx.doi.org/10.3133/sir20195018)

Esralew, R.A., Smith, S.J.,2009, Methods for estimating flow-duration and annual meanflow statistics for ungaged streams in Oklahoma: U.S. Geological Survey Scientific Investigations Report 2009-5267, 131 p. (http://pubs.usgs.gov/sir/2009/5267/)

Smith, S.J., Lewis, J.M., and Graves, G.M.,2015, Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle: U.S. Geological Survey Scientific Investigations Report 2015–5134, 35 p.

(http://dx.doi.org/10.3133/sir20155134)

Lewis, J.M., Hunter, S.L., and Labriola, L.G.,2019, Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma developed by using streamflow data through 2017: U.S. Geological Survey Scientific Investigations Report 2019–5143, 39 p. (https://doi.org/10.3133/sir20195143)

Laenen, Antonius,1980, Storm Runoff As Related to Urbanization in the Portland, Oregon -Vancouver, Washington Area: U.S. Geological Survey Open-File Report 80-689, 71 p. (https://pubs.usgs.gov/wri/wri80-689/)

Cooper, R.M.,2005, Estimation of Peak Discharges for Rural, Unregulated Streams in Western Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5116, 76 p. (http://pubs.usgs.gov/sir/2005/5116/pdf/sir2005-5116.pdf)

Risley, John, Stonewall, Adam, and Haluska, Tana,2008, Estimating flow-duration and lowflow frequency statistics for unregulated streams in Oregon: U.S. Geological Survey Scientific Investigations Report 2008-5126, 22 p. (http://pubs.usgs.gov/sir/2008/5126/) Cooper, Richard,2006, Estimation of Peak Discharges for Rural, Unregulated Streams in Eastern Oregon, Oregon Water Resources Department OFR SW 06-001, Salem, OR. (https://digital.osl.state.or.us/islandora/object/osl%3A14736/datastream/OBJ/view) Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Stuckey, M.H., Koerkle, E.H., and Ulrich, J.E.,2012, Estimation of baseline daily mean streamflows for ungaged locations on Pennsylvania streams, water years 1960–2008: U.S. Geological Survey Scientific Investigations Report 2012–5142, 61 p.

(http://pubs.usgs.gov/sir/2012/5142/)

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094)

Zarriello, P.J., Ahearn, E.A., and Levin, S.B.,2012, Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010: U.S. Geological Survey Scientific Investigations Report 2012–5109, 93 p. (http://pubs.usgs.gov/sir/2012/5109) Bent, G.C., Steeves, P.A., and Waite, A.M.,2014, Equations for estimating selected streamflow statistics in Rhode Island: U.S. Geological Survey Scientific Investigations Report 2014–5010, 65 p. (http://dx.doi.org/10.3133/sir20145010)

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2009, Magnitude and Frequency of Rural Floods in the Southeastern United States, 2006: Volume 3, South Carolina: U.S. Geological Survey Scientific Investigations Report 2009-5156, 226 p.

(http://pubs.usgs.gov/sir/2009/5156/)

Sando, Steven K.,1998, A Method for Estimating Magnitude and Frequency of Floods in South Dakota: U.S. Geological Survey Water-Resources Investigations Report 98-4055, 48 p. (http://pubs.water.usgs.gov/wri98-4055/)

Law, G.S., and Tasker G.D.,2003, Flood-Frequency Prediction Methods for Unregulated Streams of Tennessee, 2000: U.S. Geological Survey Water-Resources Investigations Report 03-4176, 79p. (http://pubs.usgs.gov/wri/wri034176/)

Neely, B.L., Jr.,1984, Flood Frequency and Storm Runoff of Urban Areas of Memphis and Shelby County, Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4110, 51 p. (http://pubs.usgs.gov/wri/wrir_84-4110/)

Robbins, Clarence H.,1984, Synthesized Flood Frequency of Small Urban Streams in Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4182, 24 p. (https://pubs.usgs.gov/wri/wrir84-4182/)

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/)

Asquith, W.H., Slade, R.M., Jr.,1999, Site-specific estimation of peak-stream flow frequency using generalized least squares regression for natural basins in Texas: U.S. Geological Survey Water-Resources Investigations Report 99-4172, 19 p. (http://pubs.water.usgs.gov/wri994172)

Asquith, William H.,1998, Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas U.S. Geological Survey Water-Resources Investigations Report 98-4015, 26 p. (http://pubs.water.usgs.gov/wri98-4015/)

Raines, Timothy H.,1998, Peak-discharge frequency and potential extreme peak discharge for natural streams in the Brazos River basin, Texas: U.S. Geological Survey Water-Resources Investigations Report 98-4178, 47 p., 1 plate (http://pubs.water.usgs.gov/wri98-4178/)

Land, L.F., Schroeder, E.E. and Hampton, B.B.,1982, Techniques for Estimating the Magnitude and Frequency of Floods in the Dallas-Fort Worth Metropolitan Area, Texas: U.S. Geological Survey Water-Resources Investigations Report 82-18, 55 p. (https://pubs.er.usgs.gov/publication/wri8218)

Asquith, W.H., Slade, R. M., Lanning-Rush, Jennifer,1996, Peak-flow frequency and extreme flood potential for streams in the vicinity of the Highland Lakes, central Texas: U.S.

Geological Survey Water-Resources Investigations Report 96-4072

(https://pubs.er.usgs.gov/publication/wri964072)

Liscum, Fred and Massey, B.C.,1980, Technique for Estimiating the Magnitude and Frequency of Floods in the Houston, Texas, Metropolitan Area: U.S. Geological Survey Water-Resources Investigations Report 80-17, 29 p.

(https://pubs.er.usgs.gov/publication/wri8017)

Asquith, W.H., and Roussel, M.C.,2009, Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-momentbased, PRESS-minimized, residual-adjusted approach: U.S. Geological Survey Scientific Investigations Report 2009–5087, 48 p. (http://pubs.usgs.gov/sir/2009/5087/) Kenney, T.A., Wilkowske, C.D., and Wright, S.J.,2007, Methods for Estimating Magnitude and Frequency of Peak Flows for Natural Streams in Utah: U.S. Geological Survey Scientific Investigations Report 2007-5158, 28 p. (http://pubs.usgs.gov/sir/2007/5158/) Wilkowske, C.D., Kenney, T.A., and Wright, S.J.,2009, Methods for Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Utah: U.S. Geological Survey Scientific Investigations Report 2008-5230, 62 p. (http://pubs.usgs.gov/sir/2008/5230/) Olson, S.A.,2002, Flow-frequency characteristics of Vermont streams: U.S. Geological Survey Water-Resources Investigations Report 02-4238, 47 p.

(http://pubs.usgs.gov/wri/wrir02-4238/)

Olson, S.A.,2014, Estimation of flood discharges at selected annual exceedance probabilities for unregulated, rural streams in Vermont, with a section on Vermont regional skew regression, by Veilleux, A.G.: U.S. Geological Survey Scientific Investigations Report 2014–5078, 27 p. plus appendixes. (http://pubs.usgs.gov/sir/2014/5078/)

Olson, S.A., and Brouillette, M.C.,2006, A logistic regression equation for estimating the probability of a stream in Vermont having intermittent flow: U.S. Geological Survey Scientific Investigations Report 2006–5217, 15 p. (https://pubs.usgs.gov/sir/2006/5217/) Austin, S.H., Krstolic, J.L., and Wiegand, Ute,2011, Low-flow characteristics of Virginia streams: U.S. Geological Survey Scientific Investigations Report 2011–5143, 122 p. + 9 tables on CD. (http://pubs.usgs.gov/sir/2011/5143/)

Austin, S.H., Krstolic, J.L., and Wiegand, Ute,2011, Peak-flow characteristics of Virginia streams: U.S. Geological Survey Scientific Investigations Report 2011–5144, 106 p. + 3 tables and 2 appendixes on CD. (http://pubs.usgs.gov/sir/2011/5144/)

Austin, S.H.,2014, Methods and equations for estimating peak streamflow per square mile in Virginia's urban basins: U.S. Geological Survey Scientific Investigations Report 2014– 5090, 25 p. (http://pubs.usgs.gov/sir/2014/5090/http://pubs.usgs.gov/sir/2014/5090/) Curran, C.A. and Olsen, T.D.,2009, Estimating Low-Flow Frequency Statistics and Hydrologic Analysis of Selected Streamflow-Gaging Stations, Nooksack River Basin, Northwestern Washington and Canada: U.S. Geological Survey Scientific Investigations Report 2009-5170, 44 p. (http://pubs.usgs.gov/sir/2009/5170/)

Curran, C.A., Eng, Ken, and Konrad, C.P.,2012, Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington: U.S. Geological Survey Scientific Investigations Report 2012-5078, 46 p. (http://pubs.usgs.gov/sir/2012/5078/)

Mastin, M.C., Konrad, C.P., Veilleux, A.G., and Tecca, A.E.,2016, Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014 (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5118, 70 p. (http://dx.doi.org/10.3133/sir20165118)

Wiley, Jeffrey B.,2008, Estimating Selected Streamflow Statistics Representative of 1930–2002 in West Virginia: U.S. Geological Survey Scientific Investigations Report 2008-5105, 24 p. (http://pubs.usgs.gov/sir/2008/5105/)

Wiley, Jeffrey B.,1987, Techniques for estimating flood depth frequency relations for streams in West Virginia: U.S. Geological Survey Water-Resources Investigations Report 87-4111, 17 p. (https://pubs.er.usgs.gov/publication/wri874111)

Wiley, J.B., and Atkins, J.T., Jr., 2010, Estimation of flood-frequency discharges for rural, unregulated streams in West Virginia: U.S. Geological Survey Scientific Investigations

Report 2010-5033, 78 p. (http://pubs.usgs.gov/sir/2010/5033/) Wiley, J.B., and Atkins, J.T., Jr., 2010, Estimation of selected seasonal streamflow statistics representative of 1930-2002 in West Virginia: U.S. Geological Survey Scientific Investigations Report 2010-5185, 20 p. (http://pubs.usgs.gov/sir/2010/5185/) Conger, Duane H., 1986, Estimating Magnitude and Frequency of Floods for Wisconsin Urban Streams: U.S. Geological Survey Water-Resources Investigations Report 86-4005, 18 p. (http://pubs.er.usgs.gov/publication/wri864005) Walker, J.F., Peppler, M.C., Danz, M.E., and Hubbard, L.E., 2017, Flood-frequency characteristics of Wisconsin streams (ver. 2.1, December 2017): Reston, Virginia, U.S. Geological Survey Scientific Investigations Report 2016-5140, 33 p., 1 plate, 2 appendixes (https://doi.org/10.3133/sir20165140) Miller, Kirk A., 2003, Peak-flow Characteristics of Wyoming Streams: U.S. Geological Survey Water-Resources Investigations Report 03-4107, 79 p. (http://pubs.usgs.gov/wri/wri034107/) Ramos-Ginés, Orlando, 1999, Estimation of Magnitude and Frequency of Floods for Streams in Puerto Rico: New Empirical Models: U. S. Geological Survey Water-Resources Investigations Report 99-4142, 41 p. (http://pubs.usgs.gov/wri/wri994142/) Moody, J.A., 2012, An analytical method for predicting postwildfire peak discharges: U.S. Geological Survey Scientific Investigations Report 2011-5236, 36 p. (https://pubs.usgs.gov/sir/2011/5236/) testtest (test)

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0396	square miles	1.61	149
DRFTPERSTR	Stratified Drift per Stream Length	-100000	square mile per mile	0	1.29
MAREGION	Massachusetts Region	1	dimensionless	0	1
BSLDEM250	Mean Basin Slope from 250K DEM	9.915	percent	0.32	24.6

Statistic	Value	Unit

Flow-Duration Statistics Citations

Sauer, Vernon B.; Thomas, W. O., Jr.; Stricker, V. A.; Wilson, K. V., 1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p. (http://pubs.er.usgs.gov/publication/wsp2207) ()

Anderson, B.T.,2020, Magnitude and frequency of floods in Alabama, 2015: U.S. Geological Survey Scientific Investigations Report 2020–5032, 148 p.

(https://doi.org/10.3133/sir20205032)

Hedgecock, T.S.,2004, Magnitude and Frequency of Floods on Small Rural Streams in Alabama: U. S. Geological Survey Scientific Investigations Report 2004-5135, 10 p. (http://pubs.usgs.gov/sir/2004/5135/)

Hedgecock, T.S.,2010, Magnitude and Frequency of Floods for Urban Streams in Alabama, 2007: U.S Geological Survey Scientific Investigations Report 2010-5012, 17p. (https://pubs.usgs.gov/sir/2010/5012/)

Wiley, J.B., and Curran, J.H.,2003, Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p. (http://water.usgs.gov/pubs/wri/wri034114/pdf/wri034114_v1.10.pdf)

Brabets, Timothy P.,1996, Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information: U.S. Geological Survey Water-Resources Investigations Report 96-4001, 98 p. (https://pubs.usgs.gov/wri/wri96-4001/)

Curran, J.H., Barth, N.A., Veilleux, A.G., and Ourso, R.T.,2016, Estimating Flood Magnitude and Frequency at Gaged and Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada, Based on Data through Water Year 2012: U.S. Geological Survey Scientific Investigations Report 2016-5024, 47 p.

(http://dx.doi.org/10.3133/sir20165024http://dx.doi.org/10.3133/sir20165024) Southard, R.E.,2010, Estimation of the Magnituude and Frequency of Floods in Urban Basins in Missouri: U.S. Geological Survey Scientific Investigations Report 2010-5073, 27 p. (http://pubs.usgs.gov/sir/2010/5073/)

Waltemeyer, S.D., Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico: U. S. Geological Survey Scientific Investigations Report2006-5306, 42 p. (http://pubs.usgs.gov/sir/2006/5306/) Paretti, N.V., Kennedy, J.R., Turney, L.A., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peakflow data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2014-5211, 61 p., http://dx.doi.org/10.3133/sir20145211.

(http://pubs.usgs.gov/sir/2014/5211/)

Kennedy, J.R., Paretti, N.V., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona: U.S. Geological Survey Scientific Investigations Report 2014–5109, 35 p.

(http://pubs.usgs.gov/sir/2014/5109/)

Funkhouser, J.E., Eng, Ken, and Moix, M.W.,2008, Low-Flow Characteristics and Regionalization of Low Flow Characteristics for Selected Streams in Arkansas: U. S. Geological Survey Scientific Investigations Report 2008-5065, 161 p.

(http://pubs.usgs.gov/sir/2008/5065/pdf/SIR2008-5065.pdf)

Breaker, B.K.,2015, Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas: U.S. Geological Survey Scientific Investigations Report 2015–5031, 25 p. (http://pubs.usgs.gov/sir/2015/5031/) Wagner, D.M., Krieger, J.D., and Veilleux, A.G.,2016, Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013: U.S. Geological Survey Scientific Investigations Report 2016–5081, 136 p. (http://dx.doi.org/10.3133/sir20165081)

Thomas, B.E, Hjalmarson, H.W., and Waltemeyer, S.D.,1997, Methods for Estimating Magnitude and Frequency of Floods in the Southwestern United States: U.S. Water-Supply

Paper 2433, 196 p. (http://pubs.er.usgs.gov/publication/wsp2433)

Gotvald, A.J., Barth, N.A., Veilleux, A.G., and Parrett, Charles,2012, Methods for determining magnitude and frequency of floods in California, based on data through water year 2006: U.S. Geological Survey Scientific Investigations Report 2012–5113, 38 p., 1 pl. (http://pubs.usgs.gov/sir/2012/5113/)

Sanocki, C.A., Williams-Sether, T., Steeves, P.A., and Christensen, V.G.,2019, Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in the Binational U.S. and Canadian Lake of the Woods-Rainy River Basin Upstream from Kenora, Ontario, Canada, Based on Data through Water Year 2013 : U.S. Geological Survey Scientific Investigations Report 2019–5012, 17 p. (https://doi.org/10.3133/sir20195012)

Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099) Ahearn, E.A.,2004, Regression Equations for Estimating Flood Flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year Recurrence Intervals in Connecticut: U.S. Geological Survey SRI 2004-5160, 62 p. (http://water.usgs.gov/pubs/sir/2004/5160/)

Ahearn, E.A.,2010, Regional regression equations to estimate flow-duration statistics in Connecticut: U. S. Geological Survey Scientific Investigations Report 2010-5052, 45 p. (http://pubs.usgs.gov/sir/2010/5052/)

Ries, K.G., III, and Dillow, J.J.A.,2006, Magnitude and frequency of floods in Delaware: Scientific Investigations Report 2006-5146, 59 p. (http://pubs.usgs.gov/sir/2006/5146/) Carpenter, D.H., and Hayes, D.C.,1996, Low-flow characteristics of streams in Maryland and Delaware: U.S. Geological Survey Water-Resources Investigations Report 94-4020, 113 p., 10 plates (https://pubs.er.usgs.gov/publication/wri944020)

Franklin, M.A. and Losey, G.T.,1984, Magnitude and Frequency of Floods from Urban Streams in Leon County, Florida: U.S. Geological Survey Water-Resources Investigations Report 84-4004, 37 p. (http://pubs.er.usgs.gov/publication/wri844004)

Lopez, M.A. and Woodham, W. M.,1983, Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida: U.S. Geological Survey Water-Resources Investigations Report 82-42, 52 p.

(https://pubs.er.usgs.gov/publication/wri8242)

Rumenik, R. P.; Grubbs, J. W.,1996, Methods for estimating low-flow characteristics of ungaged streams in selected areas, northern Florida: U.S. Geological Survey Water-Resources Investigations Report 96-4124, 28 p.

(https://doi.org/10.3133/wri964124https://doi.org/10.3133/wri964124)

Verdi, R.J., and Dixon, J.F.,2011, Magnitude and Frequency of Floods for Rural Streams in Florida, 2006: U.S. Geological Survey Scientific Investigations Report 2011–5034, 69 p., 1 pl. (http://pubs.usgs.gov/sir/2011/5034/)

Inman, E.J.,2000, Lagtime relations for urban streams in Georgia: U.S. Geological Survey Water-Resources Investigations Report 00-4049, 12 p. (https://pubs.usgs.gov/wri/wri00-4049/)

Gotvald, A.J., Feaster, T.D., and Weaver, J.C.,2009, Magnitude and Frequency of Rural Floods in the Southeastern United States, 2006: Volume 1, Georgia: U.S. Geological Survey Scientific Investigations Report 2009-5043, 120 p. (http://pubs.usgs.gov/sir/2009/5043/)

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/) Gotvald, A.J.,2017, Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia: U.S. Geological Survey Scientific Investigations Report 2017–5001, 25 p.

(https://doi.org/10.3133/sir20175001)

Oki, D.S., Rosa, S.N., and Yeung, C.W.,2010, Flood-frequency estimates for streams on Kaua'i, O'ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i: U.S. Geological Survey Scientific Investigations Report 2010-5035, 121 p. (http://pubs.usgs.gov/sir/2010/5035/) Gingerich, S.B.,2005, Median and Iow-flow characteristics for streams under natural and diverted conditions, northeast Maui, Hawaii: U.S. Geological Survey Scientific Investigations Report 2004-5262, 72 p. (http://pubs.usgs.gov/sir/2004/5262/pdf/sir2004-5262.pdf)

Fontaine, R.A., Wong, M.F., Matsuoka, Iwao,1992, Estimation of Median Streamflows at Perennial Stream Sites in Hawaii: U.S. Geological Survey Water-Resources Investigations Report 92-4099, 37 p. (http://pubs.er.usgs.gov/usgspubs/wri/wri924099)

Hortness, J.E.,2006, Estimating Low-Flow Frequency Statistics for Unregulated Streams in Idaho: U.S. Geological Survey Scientific Investigations Report 2006-5035, 31 p. (http://pubs.usgs.gov/sir/2006/5035/pdf/sir20065035.pdf)

Wood, M.S., Fosness, R.L., Skinner, K.D., and Veilleux, A.G.,2016, Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and rivers in Idaho: U.S. Geological Survey Scientific Investigations Report 2016–5083, 56 p. (http://dx.doi.org/10.3133/sir20165083)

Hortness, J.E., and Berenbrock, Charles,2001, Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Idaho: U.S. Geological Survey Water-Resources Investigations Report 01-4093, 36 p. (https://pubs.er.usgs.gov/publication/wri014093) Over, T.M., Riley, J.D., Sharpe, J.B., and Arvin, Donald,2014, Estimation of regional flowduration curves for Indiana and Illinois: U.S. Geological Survey Scientific Investigations Report 2014-5177, 24 p. and additional downloads, Tables 2-5, 8-13, and 18 (http://dx.doi.org/10.3133/sir20145177)

Soong, D.T., Ishii, A.L., Sharpe, J.B., and Avery, C.F.,2004, Estimating Flood-Peak Discharge Magnitudes and Frequencies for Rural Streams in Illinois, U.S. Geological Survey Scientific Investigations Report 2004-5103. 147 p.

(https://pubs.er.usgs.gov/publication/sir20045103)

Over, T.M., Saito, R.J., Veilleux, A.G., Sharpe, J.B., Soong, D.T., and Ishii, A.L.,2016, Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois: U.S. Geological Survey Scientific Investigations Report 2016-5050, 50 p. (http://dx.doi.org/10.3133/sir20165050)

Rao, A.R.,2005, Flood-Frequency Relationships for Indiana: Joint Transportation Research Program, Purdue University, FHWA/IN/JTRP-2005/18, 14 p.

(https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1746&context=jtrp)

Robinson, B.A.,2013, Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013–5078, 33 p. (http://pubs.usgs.gov/sir/2013/5078/)

Martin, G.R., Fowler, K.K., and Arihood, L.D.,2016, Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana (ver 1.1,

October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5102, 45 p. (http://dx.doi.org/10.3133/sir20165102)

Arihood, L.D.; Glatfelter, D.R.,1991, Method for estimating low-flow characteristics of ungaged streams in Indiana: U.S. Geological Survey Water-Supply Paper 2372, 19 p. (https://pubs.er.usgs.gov/publication/wsp2372)

Eash, D.A., and Barnes, K.K.,2012, Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in lowa: U.S. Geological Survey Scientific Investigations Report 2012-5171, 99 p. (http://pubs.usgs.gov/sir/2012/5171/) Linhart, S.M., Nania, J.F., Sanders, C.L., Jr., and Archfield, S.A.,2012, Computing daily mean streamflow at ungaged locations in lowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods: U.S. Geological Survey Scientific Investigations Report 2012–5232, 50 p. (http://pubs.usgs.gov/sir/2012/5232/) Eash, D.A., Barnes, K.K., and Veilleux, A.G.,2013, Methods for estimating annual exceedance-probability discharges for streams in lowa, based on data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2013-5086, 63 p. with a (http://pubs.usgs.gov/sir/2013/5086/)

Eash, D.A.,2015, Comparisons of estimates of annual exceedance-probability discharges for small drainage basins in Iowa, based on data through water year 2013: U.S. Geological Survey Scientific Investigations Report 2015–5055, 37 p.

(http://dx.doi.org/10.3133/sir20155055.)

Eash, D.A., Barnes, K.K., and O'Shea, P.S.,2016, Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014: U.S. Geological Survey Scientific Investigations Report 2016-5111, 32 p. (http://dx.doi.org/10.3133/sir20165111)

Perry, C.A., Wolock, D.M., and Artman, J.C.,2004, Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations: U.S. Geological Survey Scientific Investigations Report 2004-5033, 651 p.

(http://water.usgs.gov/pubs/sir/2004/5033/pdf/sir2004.5033front.pdf)

Painter, C.C., Heimann, D.C., and Lanning-Rush, J.L.,2017, Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015: U.S. Geological Survey Scientific Investigations Report 2017–5063, 20 p. (https://doi.org/10.3133/sir20175063)

Hodgkins, G.A. and Martin, G.R.,2003, Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 03-4180, 69 p. (http://water.usgs.gov/pubs/wri/wri034180/) Martin, G.R., Ruhl, K.J., Moore, B.L., and Rose, M.F.,1997, Estimation of Peak-Discharge Frequency of Urban Streams in Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 97-4219 (http://pubs.er.usgs.gov/publication/wri974219) Martin, G.R.,2002, Estimating Mean Annual Streamflow of Rural Streams in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 02-4206, 35 p. (http://pubs.er.usgs.gov/publication/wri024206)

Martin, G.R., and Arihood, L.D.,2010, Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky: U.S. Geological Survey Scientific Investigations Report 2010-5217, 83 p. (http://pubs.usgs.gov/sir/2010/5217/) Martin, G. R. and Ruhl, K. J.,1993, Regionalization of harmonic-mean streamflows in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 92-4173, 47 p., 1 pl. (http://pubs.er.usgs.gov/publication/wri924173StreamStats_KY_20140226.mdb) Brockman, R. A., Agouridis, C. T., Workman, S. R., Ormsbee, L. E., Fogle, A. W.,2012, Bankfull regional curves for the Inner and Outer Bluegrass Regions of Kentucky, Journal of

the American Water Resources Association, v. 48, no. 2, p. 391-406.

(http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2011.00621.x/full)

TR No.70, (2004) Regionalized Regression Equations for Estimating Low-Flow Characteristics for selected Louisiana Streams

(http://la.water.usgs.gov/publications/pdfs/TR70.pdf)

TR No.60, (1998) Floods in Louisiana, Magnitude and Frequency, Fifth Edition (not available)

Landers, M.N.,1985, Floodflow Frequency of Streams in the Alluvial Plain of the Lower Mississippi River in Mississippi, Arkansas, and Louisiana: U.S. Geological Survey Water-Resources Investigations Report 85-4150, 21 p.

(http://pubs.er.usgs.gov/publication/wri854150)

Lombard, P. J., Tasker, G. D., and Nielsen, M. G.,2003, August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine: U.S. Geological Survey Water-Resources Investigations Report 03-4225, 20 p.

(http://water.usgs.gov/pubs/wri/wri034225/pdf/wrir03-4225.pdf)

Lombard, P. J.,2004, August Median Streamflow on Ungaged Streams in Eastern Coastal Maine: U.S. Geological Survey Scientific Investigations Report 2004-5157, 15 p. (http://water.usgs.gov/pubs/sir/2004/5157/)

Dudley, R.W.,2004, Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2004-5026, 22 p. (http://water.usgs.gov/pubs/sir/2004/5026/pdf/sir2004-5026.pdf)

Hodgkins, G. A.,1999, Estimating the Magnitude of Peak Flows for Streams in Maine for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 99-4008, 45 p. (https://pubs.er.usgs.gov/publication/wri994008)

Dudley, R.W.,2004, Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine: U.S. Geological Survey Scientific Investigations Report 2004-5042, 30 p

(http://pubs.usgs.gov/sir/2004/5042/pdf/sir2004-5042.pdf)

Lombard, P.J.,2010, June and August median streamflows estimated for ungaged streams in southern Maine: U.S. Geological Survey Scientific Investigations Report 2010-5179, 16 p. (http://pubs.usgs.gov/sir/2010/5179/pdf/sir2010-5179.pdf)

Lombard, P.J., and Hodgkins, G.A.,2015, Peak flow regression equations for small, ungaged streams in Maine- Comparing map-based to field-based variables: U.S. Geological Survey Scientific Investigations Report 2015-5049, 12 p. (http://dx.doi.org/10.3133/sir20155049) Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151) Thomas, Jr., W.O. and Moglen, G.E.,2010, An Update of Regional Regression Equations for Maryland, Appendix 3 in Application of Hydrologic Methods in Maryland, Third Edition, September 2010: Maryland State Highway Administration and Maryland Department of the

Environment, 38 p.

(http://gishydro.eng.umd.edu/HydroPanel/hydrology_panel_report_3rd_edition_final.pdf) Chaplin, J.J.,2005, Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland: U.S. Geological Survey Scientific Investigations Report 2005-5147, 34 p.

(https://pubs.usgs.gov/sir/2005/5147/SIR2005-5147.pdf)

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p.

(http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016–5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Holtschlag, D.J. and Croskey, H.M., 1984, Statistical Methods for Estimating Flow Characteristics of Michigan Streams: U.S. Geological Survey Water-Resources Investigations Report 84-4207, 80 p. (https://pubs.er.usgs.gov/publication/wri844207) Lorenz, D.L., Sanocki, C.A., and Kocian, M.J., 2009, Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005: U.S. Geological Survey Scientific Investigations Report 2009-5250, 54 p. (http://pubs.usgs.gov/sir/2009/5250/pdf/sir2009-5250.pdf)

Ziegeweid, J.R., Lorenz, D.L., Sanocki, C.A., and Czuba, C.R.,2015, Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota: U.S. Geological Survey Scientific Investigations Report 2015–5170, 23 p. (http://dx.doi.org/10.3133/sir20155170)

Anderson, B.T.,2018, Flood frequency of rural streams in Mississippi, 2013: U.S. Geological Survey Scientific Investigations Report 2018–5148, 12 p.

(https://doi.org/10.3133/sir20185148)

Southard, R.E., and Veilleux, A.G.,2014, Methods for estimating annual exceedanceprobability discharges and largest recorded floods for unregulated streams in rural Missouri: U.S. Geological Survey Scientific Investigations Report 2014–5165, 39 p. (http://pubs.usgs.gov/sir/2014/5165/)

Southard, R.E.,2013, Computed statistics at streamgages, and methods for estimating lowflow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri: U.S. Geological Survey Scientific Investigations Report 2013-5090, 28 p. (http://pubs.usgs.gov/sir/2013/5090/) Parrett, Charles and Hull, J.A.,1985, A method for estimating mean and low flows of streams in national forests of Montana: U.S. Geological Survey Water-Resources Investigations Report 85-4071, 13 p. (https://pubs.er.usgs.gov/publication/wri854071) Parrett, Charles and Cartier, K.D. ,1999, Methods for estimating monthly streamflow characteristics at ungaged sites in western Montana: U. S. Geological Survey Water-Supply Paper 2365, 30 p. (http://pubs.er.usgs.gov/publication/wsp2365)

Parrett, Charles and Johnson, D.R.,2004, Methods for Estimating Flood Frequency in Montana Based on Data through Water Year 1998: U.S. Geological Survey Water-Resources Investigations Report 03-4308, 102 p. (http://water.usgs.gov/pubs/wri/wri03-4308/) Sando, Roy, Sando, S.K., McCarthy, P.M., and Dutton, D.M.,2016, Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: U.S. Geological Survey Scientific Investigations Report 2015-5019-F, 30 p. (https://doi.org/10.3133/sir20155019)

McCarthy, P.M., Sando, Roy, Sando, S.K., and Dutton, D.M.,2016, Methods for estimating streamflow characteristics at ungaged sites in western Montana based on data through water year 2009: U.S. Geological Survey Scientific Investigations Report 2015–5019–G, 19 p. (https://doi.org/10.3133/sir20155019)

Soenksen, P.J., Miller, L.D., Sharpe, J.B. and Watton, J.R.,1999, Peak-Flow Frequency Relations and Evaluation of the Peak-Flow Gaging Network in Nebraska: U. S. Geological Survey Water-Resources Investigations Report 99-4032, 48 p,

(https://pubs.er.usgs.gov/publication/wri994032)

Flynn, R.H. and Tasker, G.D.,2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams: U.S.Geological Survey Scientific Investigations Report 02-4298, 66 p. (http://pubs.water.usgs.gov/wrir02-4298)

Olson, S.A.,2009, Estimation of flood discharges at selected recurrence intervals for streams in New Hampshire: U.S.Geological Survey Scientific Investigations Report 2008-5206, 57 p. (http://pubs.usgs.gov/sir/2008/5206/)

Flynn, R.H. and Tasker, G.D.,2004, Generalized Estimates from Streamflow Data of Annual and Seasonal Ground-Water-Recharge Rates for Drainage Basins in New Hampshire, U.S. Geological Survey Scientific Investigations Report 2004-5019, 67 p.

(http://pubs.usgs.gov/sir/2004/5019/http://pubs.usgs.gov/sir/2004/5019/)

Watson, K.M.,and Schopp, R.D.,2009, Methodology for estimation of flood magnitude and frequency for New Jersey streams, U.S. Geological Survey Scientific Investigations Report 2009-5167, 51 p. (http://pubs.usgs.gov/sir/2009/5167/)

Watson, K.M., and McHugh, A.R.,2014, Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p. (baseline, period-or-record statistics)

(http://dx.doi.org/10.3133/sir20145004StreamStatsDB\2019_12_13_DataSource_table.xlsxDa Waltemeyer, S.D.,2002, Analysis of the magnitude and frequency of the 4-day annual low flow and regression equations for estimating the 4-day, 3-year low flow frequency at ungaged sites on unregulated streams in New Mexico: U. S. Geological Survey Water-Resources Investigations Report 01-4271, 22 p.

(https://pubs.usgs.gov/wri/2001/4271/wrir014271.pdf)

Waltemeyer, S.D.,2008, Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas: U.S. Geological Survey Scientific Investigations Report 2008-5119, 105 p.

(http://pubs.usgs.gov/sir/2008/5119/)

Lumia, Richard, Freehafer, D.A., and Smith, M.J.,2006, Magnitude and Frequency of Floods in New York: U.S. Geological Survey Scientific Investigations Report 2006–5112, 152 p. (http://pubs.usgs.gov/sir/2006/5112/)

Stedfast, D.A., 1984, Evaluation of Six Methods for Estimating Magnitude and Frequency of Peak Discharges on Urban Streams in New York: U. S. Geological Survey Water-Resources Investigations Report 84-4350, 24 p. (https://pubs.usgs.gov/wri/1984/4350/report.pdf) Mulvihill, C.I., Baldigo, B.P., Miller, S.J., and DeKoskie, Douglas, 2009, Bankfull Discharge and Channel Characteristics of Streams in New York State: U.S. Geological Survey Scientific Investigations Report 2009-5144, 51 p. (http://pubs.usgs.gov/sir/2009/5144/) Barnes, C. R., 1986, Method for estimating low-flow statistics for ungaged streams in the lower Hudson River Basin, New York: U. S. Geological Survey Water-Resources Investigations Report 85-4070, 22 p. (https://pubs.er.usgs.gov/publication/wri854070) Randall, A.D., 2010, Low flow of streams in the Susquehanna River basin of New York: U.S. Geological Survey Scientific Investigations Report 2010–5063, 57 p.

(http://pubs.usgs.gov/sir/2010/5063/http://pubs.usgs.gov/sir/2010/5063/) Gazoorian, C.L.,2015, Estimation of unaltered daily mean streamflow at ungaged streams of New York, excluding Long Island, water years 1961–2010: U.S. Geological Survey

Scientific Investigations Report 2014–5220, 29 p. (https://pubs.usgs.gov/sir/2014/5220/) Giese, G. L. and Mason, R.R., Jr.,1993, Low-flow characteristics of streams in North Carolina: U.S. Geological Survey Water-Supply Paper 2403, 29 p.

(https://pubs.er.usgs.gov/publication/wsp2403)

Mason, Robert R., Jr.; Fuste, Luis A.; King, Jeffrey N.; Thomas, Wilbert O., Jr.,2002, The National Flood-Frequency Program -- Methods for Estimating Flood Magnitude and Frequency in Rural and Urban Areas in North Carolina, 2001: U.S. Geological Survey Fact Sheet 007-00, 4 p. (http://pubs.er.usgs.gov/publication/fs00700)

Weaver, J.C., Feaster, T.D., and Gotvald, A.J.,2009, Magnitude and frequency of rural floods in the Southeastern United States, through 2006–Volume 2, North Carolina: U.S. Geological Survey Scientific Investigations Report 2009–5158, 111 p.

(http://pubs.usgs.gov/sir/2009/5158/)

Williams-Sether, T.,2015, Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009: U.S. Geological Survey Scientific Investigations Report 2015–5096, 12 p. (http://dx.doi.org/10.3133/sir20155096)

Koltun, G.F., Kula, S.P., and Puskas, B.M.,2006, A Streamflow Statistics (StreamStats) Web Application for Ohio: U.S. Geological Survey Scientific Investigations Report 2006-5312, 62 p. (http://pubs.usgs.gov/sir/2006/5312/)

Sherwood, J.M.,1994, Estimation of peak-frequency relations, flood hydrographs, and volume-duration-frequency relations of ungaged small urban streams in Ohio: U. S.

Geological Survey Water-Supply Paper 2432, 42 p.

(https://pubs.er.usgs.gov/publication/wsp2432)

Koltun, G. F., and Whitehead, M. T.,2002, Techniques for Estimating Selected Streamflow Characteristics of Rural, Unregulated Streams in Ohio: U. S. Geological Survey Water-Resources Investigations Report 02-4068, 50 p

(https://pubs.er.usgs.gov/publication/wri024068)

Koltun, G. F., and Schwartz, Ronald R.,1987, MULTIPLE-REGRESSION EQUATIONS FOR ESTIMATING LOW FLOWS AT UNGAGED STREAM SITES IN OHIO: U.S. Geological Survey Water-Resources Investigations Report 86-4354, 39 p.

(http://pubs.er.usgs.gov/usgspubs/wri/wri864354)

Koltun, G.F., and Kula, S.P.,2013, Methods for estimating selected low-flow statistics and development of annual flow-duration statistics for Ohio: U.S. Geological Survey Scientific Investigations Report 2012–5138, 195 p. (http://pubs.usgs.gov/sir/2012/5138/) Koltun, G.F.,2019, Flood-frequency estimates for Ohio streamgages based on data through

water year 2015 and techniques for estimating flood-frequency characteristics of rural, unregulated Ohio streams: U.S. Geological Survey Scientific Investigations Report 2019– 5018, xx p. (https://dx.doi.org/10.3133/sir20195018)

Esralew, R.A., Smith, S.J.,2009, Methods for estimating flow-duration and annual meanflow statistics for ungaged streams in Oklahoma: U.S. Geological Survey Scientific Investigations Report 2009-5267, 131 p. (http://pubs.usgs.gov/sir/2009/5267/) Smith, S.J., Lewis, J.M., and Graves, G.M.,2015, Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle: U.S. Geological Survey Scientific Investigations Report 2015-5134, 35 p.

(http://dx.doi.org/10.3133/sir20155134)

Lewis, J.M., Hunter, S.L., and Labriola, L.G.,2019, Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma developed by using streamflow data through 2017: U.S. Geological Survey Scientific Investigations Report 2019–5143, 39 p. (https://doi.org/10.3133/sir20195143)

Laenen, Antonius,1980, Storm Runoff As Related to Urbanization in the Portland, Oregon -Vancouver, Washington Area: U.S. Geological Survey Open-File Report 80-689, 71 p. (https://pubs.usgs.gov/wri/wri80-689/)

Cooper, R.M.,2005, Estimation of Peak Discharges for Rural, Unregulated Streams in Western Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5116, 76 p. (http://pubs.usgs.gov/sir/2005/5116/pdf/sir2005-5116.pdf)

Risley, John, Stonewall, Adam, and Haluska, Tana,2008, Estimating flow-duration and lowflow frequency statistics for unregulated streams in Oregon: U.S. Geological Survey Scientific Investigations Report 2008-5126, 22 p. (http://pubs.usgs.gov/sir/2008/5126/) Cooper, Richard,2006, Estimation of Peak Discharges for Rural, Unregulated Streams in Eastern Oregon, Oregon Water Resources Department OFR SW 06-001, Salem, OR. (https://digital.osl.state.or.us/islandora/object/osl%3A14736/datastream/OBJ/view) Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Stuckey, M.H., Koerkle, E.H., and Ulrich, J.E.,2012, Estimation of baseline daily mean streamflows for ungaged locations on Pennsylvania streams, water years 1960–2008: U.S. Geological Survey Scientific Investigations Report 2012–5142, 61 p.

(http://pubs.usgs.gov/sir/2012/5142/)

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094) Zarriello, P.J., Ahearn, E.A., and Levin, S.B.,2012, Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010: U.S. Geological Survey Scientific Investigations Report 2012–5109, 93 p. (http://pubs.usgs.gov/sir/2012/5109) Bent, G.C., Steeves, P.A., and Waite, A.M.,2014, Equations for estimating selected streamflow statistics in Rhode Island: U.S. Geological Survey Scientific Investigations Report 2012–5109, 93 p. (http://pubs.usgs.gov/sir/2012/5109) Bent, G.C., Steeves, P.A., and Waite, A.M.,2014, Equations for estimating selected streamflow statistics in Rhode Island: U.S. Geological Survey Scientific Investigations Report 2014–5010, 65 p. (http://dx.doi.org/10.3133/sir20145010)

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2009, Magnitude and Frequency of Rural Floods in the Southeastern United States, 2006: Volume 3, South Carolina: U.S. Geological Survey Scientific Investigations Report 2009-5156, 226 p.

(http://pubs.usgs.gov/sir/2009/5156/)

Sando, Steven K.,1998, A Method for Estimating Magnitude and Frequency of Floods in South Dakota: U.S. Geological Survey Water-Resources Investigations Report 98-4055, 48 p. (http://pubs.water.usgs.gov/wri98-4055/)

Law, G.S., and Tasker G.D.,2003, Flood-Frequency Prediction Methods for Unregulated Streams of Tennessee, 2000: U.S. Geological Survey Water-Resources Investigations Report 03-4176, 79p. (http://pubs.usgs.gov/wri/wri034176/)

Neely, B.L., Jr.,1984, Flood Frequency and Storm Runoff of Urban Areas of Memphis and Shelby County, Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4110, 51 p. (http://pubs.usgs.gov/wri/wrir_84-4110/)

Robbins, Clarence H.,1984, Synthesized Flood Frequency of Small Urban Streams in Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4182, 24 p. (https://pubs.usgs.gov/wri/wrir84-4182/)

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/) Asquith, W.H., Slade, R.M., Jr.,1999, Site-specific estimation of peak-stream flow frequency using generalized least squares regression for natural basins in Texas: U.S. Geological Survey Water-Resources Investigations Report 99-4172, 19 p.

(http://pubs.water.usgs.gov/wri994172) Asquith, William H.,1998, Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas U.S. Geological Survey Water-Resources Investigations

Report 98-4015, 26 p. (http://pubs.water.usgs.gov/wri98-4015/) Raines, Timothy H.,1998, Peak-discharge frequency and potential extreme peak discharge

for natural streams in the Brazos River basin, Texas: U.S. Geological Survey Water-Resources Investigations Report 98-4178, 47 p., 1 plate (http://pubs.water.usgs.gov/wri98-4178/)

Land, L.F., Schroeder, E.E. and Hampton, B.B.,1982, Techniques for Estimating the Magnitude and Frequency of Floods in the Dallas-Fort Worth Metropolitan Area, Texas: U.S. Geological Survey Water-Resources Investigations Report 82-18, 55 p.

(https://pubs.er.usgs.gov/publication/wri8218)

Asquith, W.H., Slade, R. M., Lanning-Rush, Jennifer,1996, Peak-flow frequency and extreme flood potential for streams in the vicinity of the Highland Lakes, central Texas: U.S.

Geological Survey Water-Resources Investigations Report 96-4072

(https://pubs.er.usgs.gov/publication/wri964072)

Liscum, Fred and Massey, B.C.,1980, Technique for Estimiating the Magnitude and Frequency of Floods in the Houston, Texas, Metropolitan Area: U.S. Geological Survey Water-Resources Investigations Report 80-17, 29 p.

(https://pubs.er.usgs.gov/publication/wri8017)

Asquith, W.H., and Roussel, M.C.,2009, Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-momentbased, PRESS-minimized, residual-adjusted approach: U.S. Geological Survey Scientific Investigations Report 2009–5087, 48 p. (http://pubs.usgs.gov/sir/2009/5087/) Kenney, T.A., Wilkowske, C.D., and Wright, S.J.,2007, Methods for Estimating Magnitude and Frequency of Peak Flows for Natural Streams in Utah: U.S. Geological Survey Scientific Investigations Report 2007-5158, 28 p. (http://pubs.usgs.gov/sir/2007/5158/) Wilkowske, C.D., Kenney, T.A., and Wright, S.J.,2009, Methods for Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Utah: U.S. Geological Survey Scientific Investigations Report 2008-5230, 62 p. (http://pubs.usgs.gov/sir/2008/5230/) Olson, S.A.,2002, Flow-frequency characteristics of Vermont streams: U.S. Geological Survey Water-Resources Investigations Report 02-4238, 47 p. (http://pubs.usgs.gov/wri/wrir02-4238/)

Olson, S.A.,2014, Estimation of flood discharges at selected annual exceedance probabilities for unregulated, rural streams in Vermont, with a section on Vermont regional skew regression, by Veilleux, A.G.: U.S. Geological Survey Scientific Investigations Report 2014–5078, 27 p. plus appendixes. (http://pubs.usgs.gov/sir/2014/5078/) Olson, S.A., and Brouillette, M.C.,2006, A logistic regression equation for estimating the probability of a stream in Vermont having intermittent flow: U.S. Geological Survey Scientific Investigations Report 2006–5217, 15 p. (https://pubs.usgs.gov/sir/2006/5217/) Austin, S.H., Krstolic, J.L., and Wiegand, Ute,2011, Low-flow characteristics of Virginia streams: U.S. Geological Survey Scientific Investigations Report 2011–5143, 122 p. + 9 tables on CD. (http://pubs.usgs.gov/sir/2011/5143/)

Austin, S.H., Krstolic, J.L., and Wiegand, Ute,2011, Peak-flow characteristics of Virginia streams: U.S. Geological Survey Scientific Investigations Report 2011–5144, 106 p. + 3 tables and 2 appendixes on CD. (http://pubs.usgs.gov/sir/2011/5144/)

Austin, S.H.,2014, Methods and equations for estimating peak streamflow per square mile in Virginia's urban basins: U.S. Geological Survey Scientific Investigations Report 2014– 5090, 25 p. (http://pubs.usgs.gov/sir/2014/5090/http://pubs.usgs.gov/sir/2014/5090/) Curran, C.A. and Olsen, T.D.,2009, Estimating Low-Flow Frequency Statistics and Hydrologic Analysis of Selected Streamflow-Gaging Stations, Nooksack River Basin, Northwestern Washington and Canada: U.S. Geological Survey Scientific Investigations Report 2009-5170, 44 p. (http://pubs.usgs.gov/sir/2009/5170/)

Curran, C.A., Eng, Ken, and Konrad, C.P.,2012, Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington: U.S. Geological Survey Scientific Investigations Report 2012-5078, 46 p. (http://pubs.usgs.gov/sir/2012/5078/)

Mastin, M.C., Konrad, C.P., Veilleux, A.G., and Tecca, A.E.,2016, Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014 (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5118, 70 p. (http://dx.doi.org/10.3133/sir20165118)

Wiley, Jeffrey B.,2008, Estimating Selected Streamflow Statistics Representative of 1930–2002 in West Virginia: U.S. Geological Survey Scientific Investigations Report 2008-5105, 24 p. (http://pubs.usgs.gov/sir/2008/5105/)

Wiley, Jeffrey B.,1987, Techniques for estimating flood depth frequency relations for streams in West Virginia: U.S. Geological Survey Water-Resources Investigations Report 87-4111, 17 p. (https://pubs.er.usgs.gov/publication/wri874111)

Wiley, J.B., and Atkins, J.T., Jr.,2010, Estimation of flood-frequency discharges for rural, unregulated streams in West Virginia: U.S. Geological Survey Scientific Investigations Report 2010–5033, 78 p. (http://pubs.usgs.gov/sir/2010/5033/)

Wiley, J.B., and Atkins, J.T., Jr.,2010, Estimation of selected seasonal streamflow statistics representative of 1930-2002 in West Virginia: U.S. Geological Survey Scientific Investigations Report 2010-5185, 20 p. (http://pubs.usgs.gov/sir/2010/5185/)

Conger, Duane H.,1986, Estimating Magnitude and Frequency of Floods for Wisconsin Urban Streams: U.S. Geological Survey Water-Resources Investigations Report 86-4005, 18 p. (http://pubs.er.usgs.gov/publication/wri864005)

Walker, J.F., Peppler, M.C., Danz, M.E., and Hubbard, L.E.,2017, Flood-frequency characteristics of Wisconsin streams (ver. 2.1, December 2017): Reston, Virginia, U.S. Geological Survey Scientific Investigations Report 2016–5140, 33 p., 1 plate, 2 appendixes (https://doi.org/10.3133/sir20165140)

Miller, Kirk A.,2003, Peak-flow Characteristics of Wyoming Streams: U.S. Geological Survey Water-Resources Investigations Report 03-4107, 79 p.

(http://pubs.usgs.gov/wri/wri034107/)

Ramos-Ginés, Orlando,1999, Estimation of Magnitude and Frequency of Floods for Streams in Puerto Rico: New Empirical Models: U. S. Geological Survey Water-Resources

Investigations Report 99-4142, 41 p. (http://pubs.usgs.gov/wri/wri994142/)

Moody, J.A.,2012, An analytical method for predicting postwildfire peak discharges: U.S. Geological Survey Scientific Investigations Report 2011–5236, 36 p.

(https://pubs.usgs.gov/sir/2011/5236/)

testtest (test)

August Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit	
DRNAREA	Drainage Area	0.0396	square miles	1.61	149	
BSLDEM250	Mean Basin Slope from 250K DEM	9.915	percent	0.32	24.6	
DRFTPERSTR	Stratified Drift per Stream Length	-100000	square mile per mile	0	1.29	
MAREGION	Massachusetts Region	1	dimensionless	0	1	
August Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]						
Statistic	Valu	Ie	Un	it		

August Flow-Duration Statistics Citations

Sauer, Vernon B.; Thomas, W. O., Jr.; Stricker, V. A.; Wilson, K. V.,1983, Flood characteristics of urban watersheds in the United States: U.S. Geological Survey Water-Supply Paper 2207, 63 p. (http://pubs.er.usgs.gov/publication/wsp2207)

()

Anderson, B.T.,2020, Magnitude and frequency of floods in Alabama, 2015: U.S. Geological Survey Scientific Investigations Report 2020–5032, 148 p.

(https://doi.org/10.3133/sir20205032)

Hedgecock, T.S.,2004, Magnitude and Frequency of Floods on Small Rural Streams in Alabama: U. S. Geological Survey Scientific Investigations Report 2004-5135, 10 p. (http://pubs.usgs.gov/sir/2004/5135/)

Hedgecock, T.S.,2010, Magnitude and Frequency of Floods for Urban Streams in Alabama, 2007: U.S Geological Survey Scientific Investigations Report 2010-5012, 17p. (https://pubs.usgs.gov/sir/2010/5012/)

Wiley, J.B., and Curran, J.H.,2003, Estimating annual high-flow statistics and monthly and seasonal low-flow statistics for ungaged sites on streams in Alaska and conterminous basins in Canada: U.S. Geological Survey Water-Resources Investigations Report 03-4114, 61 p. (http://water.usgs.gov/pubs/wri/wri034114/pdf/wri034114_v1.10.pdf)

Brabets, Timothy P.,1996, Evaluation of the streamflow-gaging network of Alaska in providing regional streamflow information: U.S. Geological Survey Water-Resources Investigations Report 96-4001, 98 p. (https://pubs.usgs.gov/wri/wri96-4001/)

Curran, J.H., Barth, N.A., Veilleux, A.G., and Ourso, R.T.,2016, Estimating Flood Magnitude and Frequency at Gaged and Ungaged Sites on Streams in Alaska and Conterminous Basins in Canada, Based on Data through Water Year 2012: U.S. Geological Survey Scientific Investigations Report 2016-5024, 47 p.

(http://dx.doi.org/10.3133/sir20165024http://dx.doi.org/10.3133/sir20165024) Southard, R.E.,2010, Estimation of the Magnituude and Frequency of Floods in Urban Basins in Missouri: U.S. Geological Survey Scientific Investigations Report 2010-5073, 27 p. (http://pubs.usgs.gov/sir/2010/5073/)
Waltemeyer, S.D., Analysis of the Magnitude and Frequency of Peak Discharges for the Navajo Nation in Arizona, Utah, Colorado, and New Mexico: U. S. Geological Survey Scientific Investigations Report2006-5306, 42 p. (http://pubs.usgs.gov/sir/2006/5306/) Paretti, N.V., Kennedy, J.R., Turney, L.A., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of floods in Arizona, developed with unregulated and rural peakflow data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2014-5211, 61 p., http://dx.doi.org/10.3133/sir20145211.

(http://pubs.usgs.gov/sir/2014/5211/)

Kennedy, J.R., Paretti, N.V., and Veilleux, A.G.,2014, Methods for estimating magnitude and frequency of 1-, 3-, 7-, 15-, and 30-day flood-duration flows in Arizona: U.S. Geological Survey Scientific Investigations Report 2014–5109, 35 p.

(http://pubs.usgs.gov/sir/2014/5109/)

Funkhouser, J.E., Eng, Ken, and Moix, M.W.,2008, Low-Flow Characteristics and Regionalization of Low Flow Characteristics for Selected Streams in Arkansas: U. S. Geological Survey Scientific Investigations Report 2008-5065, 161 p.

(http://pubs.usgs.gov/sir/2008/5065/pdf/SIR2008-5065.pdf)

Breaker, B.K.,2015, Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas: U.S. Geological Survey Scientific Investigations Report 2015–5031, 25 p. (http://pubs.usgs.gov/sir/2015/5031/) Wagner, D.M., Krieger, J.D., and Veilleux, A.G.,2016, Methods for estimating annual exceedance probability discharges for streams in Arkansas, based on data through water year 2013: U.S. Geological Survey Scientific Investigations Report 2016–5081, 136 p. (http://dx.doi.org/10.3133/sir20165081)

Thomas, B.E, Hjalmarson, H.W., and Waltemeyer, S.D.,1997, Methods for Estimating Magnitude and Frequency of Floods in the Southwestern United States: U.S. Water-Supply Paper 2433, 196 p. (http://pubs.er.usgs.gov/publication/wsp2433)

Gotvald, A.J., Barth, N.A., Veilleux, A.G., and Parrett, Charles,2012, Methods for determining magnitude and frequency of floods in California, based on data through water year 2006: U.S. Geological Survey Scientific Investigations Report 2012–5113, 38 p., 1 pl. (http://pubs.usgs.gov/sir/2012/5113/)

Sanocki, C.A., Williams-Sether, T., Steeves, P.A., and Christensen, V.G.,2019, Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in the Binational U.S. and Canadian Lake of the Woods-Rainy River Basin Upstream from Kenora, Ontario, Canada, Based on Data through Water Year 2013 : U.S. Geological Survey Scientific Investigations Report 2019–5012, 17 p. (https://doi.org/10.3133/sir20195012) Capesius, J.P., and Stephens, V. C.,2009, Regional Regression Equations for Estimation of Natural Streamflow Statistics in Colorado: U. S. Geological Survey Scientific Investigations Report 2009-5136, 32 p.

(http://pubs.usgs.gov/sir/2009/5136/http://pubs.usgs.gov/sir/2009/5136/)

Kohn, M.S., Stevens, M.R., Harden, T.M., Godaire, J.E., Klinger, R.E., and Mommandi, A.,2016, Paleoflood investigations to improve peak-streamflow regional-regression equations for natural streamflow in eastern Colorado, 2015: U.S. Geological Survey Scientific Investigations Report 2016–5099, 58 p. (http://dx.doi.org/10.3133/sir20165099) Ahearn, E.A.,2004, Regression Equations for Estimating Flood Flows for the 2-, 10-, 25-, 50-, 100-, and 500-Year Recurrence Intervals in Connecticut: U.S. Geological Survey SRI 2004-5160, 62 p. (http://water.usgs.gov/pubs/sir/2004/5160/)

Ahearn, E.A.,2010, Regional regression equations to estimate flow-duration statistics in Connecticut: U. S. Geological Survey Scientific Investigations Report 2010-5052, 45 p. (http://pubs.usgs.gov/sir/2010/5052/)

Ries, K.G., III, and Dillow, J.J.A.,2006, Magnitude and frequency of floods in Delaware: Scientific Investigations Report 2006-5146, 59 p. (http://pubs.usgs.gov/sir/2006/5146/) Carpenter, D.H., and Hayes, D.C.,1996, Low-flow characteristics of streams in Maryland and Delaware: U.S. Geological Survey Water-Resources Investigations Report 94-4020, 113 p., 10 plates (https://pubs.er.usgs.gov/publication/wri944020)

Franklin, M.A. and Losey, G.T.,1984, Magnitude and Frequency of Floods from Urban Streams in Leon County, Florida: U.S. Geological Survey Water-Resources Investigations Report 84-4004, 37 p. (http://pubs.er.usgs.gov/publication/wri844004)

Lopez, M.A. and Woodham, W. M.,1983, Magnitude and frequency of flooding on small urban watersheds in the Tampa Bay area, west-central Florida: U.S. Geological Survey Water-Resources Investigations Report 82-42, 52 p.

(https://pubs.er.usgs.gov/publication/wri8242)

Rumenik, R. P.; Grubbs, J. W.,1996, Methods for estimating low-flow characteristics of ungaged streams in selected areas, northern Florida: U.S. Geological Survey Water-Resources Investigations Report 96-4124, 28 p.

(https://doi.org/10.3133/wri964124https://doi.org/10.3133/wri964124)

Verdi, R.J., and Dixon, J.F.,2011, Magnitude and Frequency of Floods for Rural Streams in Florida, 2006: U.S. Geological Survey Scientific Investigations Report 2011–5034, 69 p., 1 pl. (http://pubs.usgs.gov/sir/2011/5034/)

Inman, E.J.,2000, Lagtime relations for urban streams in Georgia: U.S. Geological Survey Water-Resources Investigations Report 00-4049, 12 p. (https://pubs.usgs.gov/wri/wri00-4049/)

Gotvald, A.J., Feaster, T.D., and Weaver, J.C.,2009, Magnitude and Frequency of Rural Floods in the Southeastern United States, 2006: Volume 1, Georgia: U.S. Geological Survey Scientific Investigations Report 2009-5043, 120 p. (http://pubs.usgs.gov/sir/2009/5043/) Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2014, Methods for estimating the magnitude and frequency of floods for urban and small, rural streams in Georgia, South Carolina, and North Carolina, 2011 (ver. 1.1, March 2014): U.S. Geological Survey Scientific Investigations Report 2014–5030, 104 p. (http://pubs.usgs.gov/sir/2014/5030/) Gotvald, A.J.,2017, Methods for estimating selected low-flow frequency statistics and mean annual flow for ungaged locations on streams in North Georgia: U.S. Geological Survey Scientific Investigations Report 2017–5001, 25 p.

(https://doi.org/10.3133/sir20175001)

Oki, D.S., Rosa, S.N., and Yeung, C.W.,2010, Flood-frequency estimates for streams on Kaua'i, O'ahu, Moloka'i, Maui, and Hawai'i, State of Hawai'i: U.S. Geological Survey Scientific Investigations Report 2010-5035, 121 p. (http://pubs.usgs.gov/sir/2010/5035/) Gingerich, S.B.,2005, Median and Iow-flow characteristics for streams under natural and diverted conditions, northeast Maui, Hawaii: U.S. Geological Survey Scientific Investigations Report 2004-5262, 72 p. (http://pubs.usgs.gov/sir/2004/5262/pdf/sir2004-5262.pdf)

Fontaine, R.A., Wong, M.F., Matsuoka, Iwao,1992, Estimation of Median Streamflows at Perennial Stream Sites in Hawaii: U.S. Geological Survey Water-Resources Investigations Report 92-4099, 37 p. (http://pubs.er.usgs.gov/usgspubs/wri/wri924099)

Hortness, J.E.,2006, Estimating Low-Flow Frequency Statistics for Unregulated Streams in Idaho: U.S. Geological Survey Scientific Investigations Report 2006-5035, 31 p. (http://pubs.usgs.gov/sir/2006/5035/pdf/sir20065035.pdf)

Wood, M.S., Fosness, R.L., Skinner, K.D., and Veilleux, A.G.,2016, Estimating peak-flow frequency statistics for selected gaged and ungaged sites in naturally flowing streams and

rivers in Idaho: U.S. Geological Survey Scientific Investigations Report 2016–5083, 56 p. (http://dx.doi.org/10.3133/sir20165083)

Hortness, J.E., and Berenbrock, Charles,2001, Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Idaho: U.S. Geological Survey Water-Resources Investigations Report 01-4093, 36 p. (https://pubs.er.usgs.gov/publication/wri014093) Over, T.M., Riley, J.D., Sharpe, J.B., and Arvin, Donald,2014, Estimation of regional flowduration curves for Indiana and Illinois: U.S. Geological Survey Scientific Investigations Report 2014-5177, 24 p. and additional downloads, Tables 2-5, 8-13, and 18 (http://dx.doi.org/10.3133/sir20145177)

Soong, D.T., Ishii, A.L., Sharpe, J.B., and Avery, C.F.,2004, Estimating Flood-Peak Discharge Magnitudes and Frequencies for Rural Streams in Illinois, U.S. Geological Survey Scientific Investigations Report 2004-5103. 147 p.

(https://pubs.er.usgs.gov/publication/sir20045103)

Over, T.M., Saito, R.J., Veilleux, A.G., Sharpe, J.B., Soong, D.T., and Ishii, A.L.,2016, Estimation of peak discharge quantiles for selected annual exceedance probabilities in northeastern Illinois: U.S. Geological Survey Scientific Investigations Report 2016-5050, 50 p. (http://dx.doi.org/10.3133/sir20165050)

Rao, A.R.,2005, Flood-Frequency Relationships for Indiana: Joint Transportation Research Program, Purdue University, FHWA/IN/JTRP-2005/18, 14 p.

(https://docs.lib.purdue.edu/cgi/viewcontent.cgi?article=1746&context=jtrp) Robinson, B.A.,2013, Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana: U.S. Geological Survey, Scientific Investigations Report 2013-5078, 33 p. (http://pubs.usgs.gov/sir/2013/5078/)

Martin, G.R., Fowler, K.K., and Arihood, L.D.,2016, Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5102, 45 p. (http://dx.doi.org/10.3133/sir20165102)

Arihood, L.D.; Glatfelter, D.R.,1991, Method for estimating low-flow characteristics of ungaged streams in Indiana: U.S. Geological Survey Water-Supply Paper 2372, 19 p. (https://pubs.er.usgs.gov/publication/wsp2372)

Eash, D.A., and Barnes, K.K.,2012, Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa: U.S. Geological Survey Scientific Investigations Report 2012-5171, 99 p. (http://pubs.usgs.gov/sir/2012/5171/) Linhart, S.M., Nania, J.F., Sanders, C.L., Jr., and Archfield, S.A.,2012, Computing daily mean streamflow at ungaged locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer statistical methods: U.S. Geological Survey Scientific

Investigations Report 2012-5232, 50 p. (http://pubs.usgs.gov/sir/2012/5232/) Eash, D.A., Barnes, K.K., and Veilleux, A.G.,2013, Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2013-5086, 63 p. with a (http://pubs.usgs.gov/sir/2013/5086/)

Eash, D.A.,2015, Comparisons of estimates of annual exceedance-probability discharges for small drainage basins in Iowa, based on data through water year 2013: U.S. Geological Survey Scientific Investigations Report 2015–5055, 37 p.

(http://dx.doi.org/10.3133/sir20155055.)

Eash, D.A., Barnes, K.K., and O'Shea, P.S.,2016, Methods for estimating selected spring and fall low-flow frequency statistics for ungaged stream sites in Iowa, based on data through June 2014: U.S. Geological Survey Scientific Investigations Report 2016–5111, 32 p. (http://dx.doi.org/10.3133/sir20165111)

Perry, C.A., Wolock, D.M., and Artman, J.C.,2004, Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations: U.S. Geological Survey Scientific Investigations Report 2004-5033, 651 p.

(http://water.usgs.gov/pubs/sir/2004/5033/pdf/sir2004.5033front.pdf) Painter, C.C., Heimann, D.C., and Lanning-Rush, J.L.,2017, Methods for estimating annual exceedance-probability streamflows for streams in Kansas based on data through water year 2015: U.S. Geological Survey Scientific Investigations Report 2017-5063, 20 p. (https://doi.org/10.3133/sir20175063)

Hodgkins, G.A. and Martin, G.R.,2003, Estimating the Magnitude of Peak Flows for Streams in Kentucky for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 03-4180, 69 p. (http://water.usgs.gov/pubs/wri/wri034180/) Martin, G.R., Ruhl, K.J., Moore, B.L., and Rose, M.F.,1997, Estimation of Peak-Discharge Frequency of Urban Streams in Jefferson County, Kentucky: U.S. Geological Survey Water-Resources Investigations Report 97-4219 (http://pubs.er.usgs.gov/publication/wri974219) Martin, G.R.,2002, Estimating Mean Annual Streamflow of Rural Streams in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 02-4206, 35 p. (http://pubs.er.usgs.gov/publication/wri024206)

Martin, G.R., and Arihood, L.D.,2010, Methods for estimating selected low-flow frequency statistics for unregulated streams in Kentucky: U.S. Geological Survey Scientific Investigations Report 2010-5217, 83 p. (http://pubs.usgs.gov/sir/2010/5217/) Martin, G. R. and Ruhl, K. J.,1993, Regionalization of harmonic-mean streamflows in Kentucky: U.S. Geological Survey Water-Resources Investigations Report 92-4173, 47 p., 1 pl. (http://pubs.er.usgs.gov/publication/wri924173StreamStats_KY_20140226.mdb) Brockman, R. A., Agouridis, C. T., Workman, S. R., Ormsbee, L. E., Fogle, A. W.,2012, Bankfull regional curves for the Inner and Outer Bluegrass Regions of Kentucky, Journal of the American Water Resources Association, v. 48, no. 2, p. 391-406.

the American Water Resources Association, v. 48, no. 2, p. 391-406. (http://onlinelibrary.wiley.com/doi/10.1111/j.1752-1688.2011.00621.x/full)

TR No.70, (2004) Regionalized Regression Equations for Estimating Low-Flow Characteristics for selected Louisiana Streams

(http://la.water.usgs.gov/publications/pdfs/TR70.pdf)

TR No.60, (1998) Floods in Louisiana, Magnitude and Frequency, Fifth Edition (not available)

Landers, M.N.,1985, Floodflow Frequency of Streams in the Alluvial Plain of the Lower Mississippi River in Mississippi, Arkansas, and Louisiana: U.S. Geological Survey Water-Resources Investigations Report 85-4150, 21 p.

(http://pubs.er.usgs.gov/publication/wri854150)

Lombard, P. J., Tasker, G. D., and Nielsen, M. G.,2003, August Median Streamflow on Ungaged Streams in Eastern Aroostook County, Maine: U.S. Geological Survey Water-Resources Investigations Report 03-4225, 20 p.

(http://water.usgs.gov/pubs/wri/wri034225/pdf/wrir03-4225.pdf)

Lombard, P. J.,2004, August Median Streamflow on Ungaged Streams in Eastern Coastal Maine: U.S. Geological Survey Scientific Investigations Report 2004-5157, 15 p. (http://water.usgs.gov/pubs/sir/2004/5157/)

Dudley, R.W.,2004, Estimating Monthly, Annual, and Low 7-Day, 10-Year Streamflows for Ungaged Rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2004-5026, 22 p. (http://water.usgs.gov/pubs/sir/2004/5026/pdf/sir2004-5026.pdf)

Hodgkins, G. A., 1999, Estimating the Magnitude of Peak Flows for Streams in Maine for Selected Recurrence Intervals: U.S. Geological Survey Water-Resources Investigations Report 99-4008, 45 p. (https://pubs.er.usgs.gov/publication/wri994008)

Dudley, R.W.,2004, Hydraulic-Geometry Relations for Rivers in Coastal and Central Maine: U.S. Geological Survey Scientific Investigations Report 2004-5042, 30 p

(http://pubs.usgs.gov/sir/2004/5042/pdf/sir2004-5042.pdf)

Lombard, P.J.,2010, June and August median streamflows estimated for ungaged streams in southern Maine: U.S. Geological Survey Scientific Investigations Report 2010-5179, 16 p. (http://pubs.usgs.gov/sir/2010/5179/pdf/sir2010-5179.pdf)

Lombard, P.J., and Hodgkins, G.A.,2015, Peak flow regression equations for small, ungaged streams in Maine- Comparing map-based to field-based variables: U.S. Geological Survey Scientific Investigations Report 2015-5049, 12 p. (http://dx.doi.org/10.3133/sir20155049) Dudley, R.W.,2015, Regression equations for monthly and annual mean and selected percentile streamflows for ungaged rivers in Maine: U.S. Geological Survey Scientific Investigations Report 2015-5151, 35 p. (http://dx.doi.org/10.3133/sir20155151) Thomas, Jr., W.O. and Moglen, G.E.,2010, An Update of Regional Regression Equations for

Maryland, Appendix 3 in Application of Hydrologic Methods in Maryland, Third Edition, September 2010: Maryland State Highway Administration and Maryland Department of the Environment, 38 p.

(http://gishydro.eng.umd.edu/HydroPanel/hydrology_panel_report_3rd_edition_final.pdf) Chaplin, J.J.,2005, Development of regional curves relating bankfull-channel geometry and discharge to drainage area for streams in Pennsylvania and selected areas of Maryland: U.S. Geological Survey Scientific Investigations Report 2005-5147, 34 p.

(https://pubs.usgs.gov/sir/2005/5147/SIR2005-5147.pdf)

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p.

(http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016–5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Holtschlag, D.J. and Croskey, H.M., 1984, Statistical Methods for Estimating Flow Characteristics of Michigan Streams: U.S. Geological Survey Water-Resources Investigations Report 84-4207, 80 p. (https://pubs.er.usgs.gov/publication/wri844207) Lorenz, D.L., Sanocki, C.A., and Kocian, M.J., 2009, Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005: U.S. Geological Survey Scientific Investigations Report 2009-5250, 54 p. (http://pubs.usgs.gov/sir/2009/5250/pdf/sir2009-5250.pdf)

Ziegeweid, J.R., Lorenz, D.L., Sanocki, C.A., and Czuba, C.R.,2015, Methods for estimating flow-duration curve and low-flow frequency statistics for ungaged locations on small streams in Minnesota: U.S. Geological Survey Scientific Investigations Report 2015–5170, 23 p. (http://dx.doi.org/10.3133/sir20155170)

Anderson, B.T.,2018, Flood frequency of rural streams in Mississippi, 2013: U.S. Geological Survey Scientific Investigations Report 2018–5148, 12 p.

(https://doi.org/10.3133/sir20185148)

Southard, R.E., and Veilleux, A.G.,2014, Methods for estimating annual exceedanceprobability discharges and largest recorded floods for unregulated streams in rural Missouri: U.S. Geological Survey Scientific Investigations Report 2014–5165, 39 p. (http://pubs.usgs.gov/sir/2014/5165/)

Southard, R.E.,2013, Computed statistics at streamgages, and methods for estimating lowflow frequency statistics and development of regional regression equations for estimating low-flow frequency statistics at ungaged locations in Missouri: U.S. Geological Survey Scientific Investigations Report 2013–5090, 28 p. (http://pubs.usgs.gov/sir/2013/5090/) Parrett, Charles and Hull, J.A.,1985, A method for estimating mean and low flows of streams in national forests of Montana: U.S. Geological Survey Water-Resources Investigations Report 85-4071, 13 p. (https://pubs.er.usgs.gov/publication/wri854071) Parrett, Charles and Cartier, K.D. ,1999, Methods for estimating monthly streamflow characteristics at ungaged sites in western Montana: U. S. Geological Survey Water-Supply Paper 2365, 30 p. (http://pubs.er.usgs.gov/publication/wsp2365)

Parrett, Charles and Johnson, D.R.,2004, Methods for Estimating Flood Frequency in Montana Based on Data through Water Year 1998: U.S. Geological Survey Water-Resources Investigations Report 03-4308, 102 p. (http://water.usgs.gov/pubs/wri/wri03-4308/) Sando, Roy, Sando, S.K., McCarthy, P.M., and Dutton, D.M.,2016, Methods for estimating peak-flow frequencies at ungaged sites in Montana based on data through water year 2011: U.S. Geological Survey Scientific Investigations Report 2015-5019-F, 30 p. (https://doi.org/10.3133/sir20155019)

McCarthy, P.M., Sando, Roy, Sando, S.K., and Dutton, D.M.,2016, Methods for estimating streamflow characteristics at ungaged sites in western Montana based on data through water year 2009: U.S. Geological Survey Scientific Investigations Report 2015–5019–G, 19 p. (https://doi.org/10.3133/sir20155019)

Soenksen, P.J., Miller, L.D., Sharpe, J.B. and Watton, J.R.,1999, Peak-Flow Frequency Relations and Evaluation of the Peak-Flow Gaging Network in Nebraska: U. S. Geological Survey Water-Resources Investigations Report 99-4032, 48 p,

(https://pubs.er.usgs.gov/publication/wri994032)

Flynn, R.H. and Tasker, G.D.,2002, Development of Regression Equations to Estimate Flow Durations and Low-Flow-Frequency Statistics in New Hampshire Streams: U.S.Geological Survey Scientific Investigations Report 02-4298, 66 p. (http://pubs.water.usgs.gov/wrir02-4298)

Olson, S.A.,2009, Estimation of flood discharges at selected recurrence intervals for streams in New Hampshire: U.S.Geological Survey Scientific Investigations Report 2008-5206, 57 p. (http://pubs.usgs.gov/sir/2008/5206/)

Flynn, R.H. and Tasker, G.D.,2004, Generalized Estimates from Streamflow Data of Annual and Seasonal Ground-Water-Recharge Rates for Drainage Basins in New Hampshire, U.S. Geological Survey Scientific Investigations Report 2004-5019, 67 p.

(http://pubs.usgs.gov/sir/2004/5019/http://pubs.usgs.gov/sir/2004/5019/)

Watson, K.M.,and Schopp, R.D.,2009, Methodology for estimation of flood magnitude and frequency for New Jersey streams, U.S. Geological Survey Scientific Investigations Report 2009-5167, 51 p. (http://pubs.usgs.gov/sir/2009/5167/)

Watson, K.M., and McHugh, A.R.,2014, Regional regression equations for the estimation of selected monthly low-flow duration and frequency statistics at ungaged sites on streams in New Jersey: U.S. Geological Survey Scientific Investigations Report 2014–5004, 59 p. (baseline, period-or-record statistics)

(http://dx.doi.org/10.3133/sir20145004StreamStatsDB\2019_12_13_DataSource_table.xlsxDa

Waltemeyer, S.D.,2002, Analysis of the magnitude and frequency of the 4-day annual low flow and regression equations for estimating the 4-day, 3-year low flow frequency at ungaged sites on unregulated streams in New Mexico: U. S. Geological Survey Water-Resources Investigations Report 01-4271, 22 p.

(https://pubs.usgs.gov/wri/2001/4271/wrir014271.pdf)

Waltemeyer, S.D.,2008, Analysis of the Magnitude and Frequency of Peak Discharge and Maximum Observed Peak Discharge in New Mexico and Surrounding Areas: U.S. Geological Survey Scientific Investigations Report 2008-5119, 105 p.

(http://pubs.usgs.gov/sir/2008/5119/)

Lumia, Richard, Freehafer, D.A., and Smith, M.J.,2006, Magnitude and Frequency of Floods in New York: U.S. Geological Survey Scientific Investigations Report 2006–5112, 152 p. (http://pubs.usgs.gov/sir/2006/5112/)

Stedfast, D.A., 1984, Evaluation of Six Methods for Estimating Magnitude and Frequency of Peak Discharges on Urban Streams in New York: U. S. Geological Survey Water-Resources Investigations Report 84-4350, 24 p. (https://pubs.usgs.gov/wri/1984/4350/report.pdf) Mulvihill, C.I., Baldigo, B.P., Miller, S.J., and DeKoskie, Douglas, 2009, Bankfull Discharge and Channel Characteristics of Streams in New York State: U.S. Geological Survey Scientific Investigations Report 2009-5144, 51 p. (http://pubs.usgs.gov/sir/2009/5144/) Barnes, C. R.,1986, Method for estimating low-flow statistics for ungaged streams in the lower Hudson River Basin, New York: U. S. Geological Survey Water-Resources Investigations Report 85-4070, 22 p. (https://pubs.er.usgs.gov/publication/wri854070) Randall, A.D.,2010, Low flow of streams in the Susquehanna River basin of New York: U.S. Geological Survey Scientific Investigations Report 2010-5063, 57 p.

(http://pubs.usgs.gov/sir/2010/5063/http://pubs.usgs.gov/sir/2010/5063/)

Gazoorian, C.L.,2015, Estimation of unaltered daily mean streamflow at ungaged streams of New York, excluding Long Island, water years 1961–2010: U.S. Geological Survey Scientific Investigations Report 2014–5220, 29 p. (https://pubs.usgs.gov/sir/2014/5220/) Giese, G. L. and Mason, R.R., Jr.,1993, Low-flow characteristics of streams in North Carolina: U.S. Geological Survey Water-Supply Paper 2403, 29 p.

(https://pubs.er.usgs.gov/publication/wsp2403)

Mason, Robert R., Jr.; Fuste, Luis A.; King, Jeffrey N.; Thomas, Wilbert O., Jr.,2002, The National Flood-Frequency Program -- Methods for Estimating Flood Magnitude and Frequency in Rural and Urban Areas in North Carolina, 2001: U.S. Geological Survey Fact Sheet 007-00, 4 p. (http://pubs.er.usgs.gov/publication/fs00700)

Weaver, J.C., Feaster, T.D., and Gotvald, A.J.,2009, Magnitude and frequency of rural floods in the Southeastern United States, through 2006–Volume 2, North Carolina: U.S. Geological Survey Scientific Investigations Report 2009–5158, 111 p.

(http://pubs.usgs.gov/sir/2009/5158/)

Williams-Sether, T.,2015, Regional regression equations to estimate peak-flow frequency at sites in North Dakota using data through 2009: U.S. Geological Survey Scientific Investigations Report 2015–5096, 12 p. (http://dx.doi.org/10.3133/sir20155096) Koltun, G.F., Kula, S.P., and Puskas, B.M.,2006, A Streamflow Statistics (StreamStats) Web Application for Ohio: U.S. Geological Survey Scientific Investigations Report 2006-5312, 62 p. (http://pubs.usgs.gov/sir/2006/5312/)

Sherwood, J.M.,1994, Estimation of peak-frequency relations, flood hydrographs, and volume-duration-frequency relations of ungaged small urban streams in Ohio: U. S. Geological Survey Water-Supply Paper 2432, 42 p.

(https://pubs.er.usgs.gov/publication/wsp2432)

Koltun, G. F., and Whitehead, M. T.,2002, Techniques for Estimating Selected Streamflow Characteristics of Rural, Unregulated Streams in Ohio: U. S. Geological Survey Water-Resources Investigations Report 02-4068, 50 p

(https://pubs.er.usgs.gov/publication/wri024068)

Koltun, G. F., and Schwartz, Ronald R.,1987, MULTIPLE-REGRESSION EQUATIONS FOR ESTIMATING LOW FLOWS AT UNGAGED STREAM SITES IN OHIO: U.S. Geological Survey Water-Resources Investigations Report 86-4354, 39 p.

(http://pubs.er.usgs.gov/usgspubs/wri/wri864354)

Koltun, G.F., and Kula, S.P.,2013, Methods for estimating selected low-flow statistics and development of annual flow-duration statistics for Ohio: U.S. Geological Survey Scientific Investigations Report 2012–5138, 195 p. (http://pubs.usgs.gov/sir/2012/5138/)

Koltun, G.F.,2019, Flood-frequency estimates for Ohio streamgages based on data through water year 2015 and techniques for estimating flood-frequency characteristics of rural, unregulated Ohio streams: U.S. Geological Survey Scientific Investigations Report 2019– 5018, xx p. (https://dx.doi.org/10.3133/sir20195018)

Esralew, R.A., Smith, S.J.,2009, Methods for estimating flow-duration and annual meanflow statistics for ungaged streams in Oklahoma: U.S. Geological Survey Scientific Investigations Report 2009-5267, 131 p. (http://pubs.usgs.gov/sir/2009/5267/)

Smith, S.J., Lewis, J.M., and Graves, G.M.,2015, Methods for estimating the magnitude and frequency of peak streamflows at ungaged sites in and near the Oklahoma Panhandle: U.S. Geological Survey Scientific Investigations Report 2015–5134, 35 p.

(http://dx.doi.org/10.3133/sir20155134)

Lewis, J.M., Hunter, S.L., and Labriola, L.G.,2019, Methods for estimating the magnitude and frequency of peak streamflows for unregulated streams in Oklahoma developed by using streamflow data through 2017: U.S. Geological Survey Scientific Investigations Report 2019–5143, 39 p. (https://doi.org/10.3133/sir20195143)

Laenen, Antonius,1980, Storm Runoff As Related to Urbanization in the Portland, Oregon -Vancouver, Washington Area: U.S. Geological Survey Open-File Report 80-689, 71 p. (https://pubs.usgs.gov/wri/wri80-689/)

Cooper, R.M.,2005, Estimation of Peak Discharges for Rural, Unregulated Streams in Western Oregon: U.S. Geological Survey Scientific Investigations Report 2005-5116, 76 p. (http://pubs.usgs.gov/sir/2005/5116/pdf/sir2005-5116.pdf)

Risley, John, Stonewall, Adam, and Haluska, Tana,2008, Estimating flow-duration and lowflow frequency statistics for unregulated streams in Oregon: U.S. Geological Survey Scientific Investigations Report 2008-5126, 22 p. (http://pubs.usgs.gov/sir/2008/5126/) Cooper, Richard,2006, Estimation of Peak Discharges for Rural, Unregulated Streams in Eastern Oregon, Oregon Water Resources Department OFR SW 06-001, Salem, OR. (https://digital.osl.state.or.us/islandora/object/osl%3A14736/datastream/OBJ/view) Stuckey, M.H.,2006, Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams: U.S. Geological Survey Scientific Investigations Report 2006-5130, 84 p. (http://pubs.usgs.gov/sir/2006/5130/)

Stuckey, M.H., Koerkle, E.H., and Ulrich, J.E.,2012, Estimation of baseline daily mean streamflows for ungaged locations on Pennsylvania streams, water years 1960–2008: U.S. Geological Survey Scientific Investigations Report 2012–5142, 61 p. (http://pubs.usgs.gov/sir/2012/5142/)

Clune, J.W., Chaplin, J.J., and White, K.E.,2018, Comparison of regression relations of bankfull discharge and channel geometry for the glaciated and nonglaciated settings of Pennsylvania and southern New York: U.S. Geological Survey Scientific Investigations Report 2018–5066, 20 p. (https://doi.org/10.3133/sir20185066)

Roland, M.A., and Stuckey, M.H.,2019, Development of regression equations for the estimation of flood flows at ungaged streams in Pennsylvania: U.S. Geological Survey Scientific Investigations Report 2019–5094, 36 p. (https:// doi.org/10.3133/sir20195094) Zarriello, P.J., Ahearn, E.A., and Levin, S.B.,2012, Magnitude of flood flows for selected annual exceedance probabilities in Rhode Island through 2010: U.S. Geological Survey Scientific Investigations Report 2012–5109, 93 p. (http://pubs.usgs.gov/sir/2012/5109) Bent, G.C., Steeves, P.A., and Waite, A.M.,2014, Equations for estimating selected streamflow statistics in Rhode Island: U.S. Geological Survey Scientific Investigations Report 2014–5010, 65 p. (http://dx.doi.org/10.3133/sir20145010)

Feaster, T.D., Gotvald, A.J., and Weaver, J.C.,2009, Magnitude and Frequency of Rural Floods in the Southeastern United States, 2006: Volume 3, South Carolina: U.S. Geological Survey Scientific Investigations Report 2009-5156, 226 p.

(http://pubs.usgs.gov/sir/2009/5156/)

Sando, Steven K.,1998, A Method for Estimating Magnitude and Frequency of Floods in South Dakota: U.S. Geological Survey Water-Resources Investigations Report 98-4055, 48 p. (http://pubs.water.usgs.gov/wri98-4055/)

Law, G.S., and Tasker G.D.,2003, Flood-Frequency Prediction Methods for Unregulated Streams of Tennessee, 2000: U.S. Geological Survey Water-Resources Investigations Report 03-4176, 79p. (http://pubs.usgs.gov/wri/wri034176/)

Neely, B.L., Jr.,1984, Flood Frequency and Storm Runoff of Urban Areas of Memphis and Shelby County, Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4110, 51 p. (http://pubs.usgs.gov/wri/wrir_84-4110/)

Robbins, Clarence H.,1984, Synthesized Flood Frequency of Small Urban Streams in Tennessee: U.S. Geological Survey Water-Resources Investigations Report 84-4182, 24 p. (https://pubs.usgs.gov/wri/wrir84-4182/)

Law, G.S., Tasker, G.D., and Ladd, D.E.,2009, Streamflow-characteristic estimation methods for unregulated streams of Tennessee: U.S. Geological Survey Scientific Investigations Report 2009–5159, 212 p., 1 pl. (http://pubs.usgs.gov/sir/2009/5159/)

Asquith, W.H., Slade, R.M., Jr.,1999, Site-specific estimation of peak-stream flow frequency using generalized least squares regression for natural basins in Texas: U.S. Geological Survey Water-Resources Investigations Report 99-4172, 19 p. (http://pubs.water.usgs.gov/wri994172)

Asquith, William H.,1998, Peak-flow frequency for tributaries of the Colorado River downstream of Austin, Texas U.S. Geological Survey Water-Resources Investigations Report 98-4015, 26 p. (http://pubs.water.usgs.gov/wri98-4015/)

Raines, Timothy H.,1998, Peak-discharge frequency and potential extreme peak discharge for natural streams in the Brazos River basin, Texas: U.S. Geological Survey Water-Resources Investigations Report 98-4178, 47 p., 1 plate (http://pubs.water.usgs.gov/wri98-4178/)

Land, L.F., Schroeder, E.E. and Hampton, B.B.,1982, Techniques for Estimating the Magnitude and Frequency of Floods in the Dallas-Fort Worth Metropolitan Area, Texas: U.S. Geological Survey Water-Resources Investigations Report 82-18, 55 p.

(https://pubs.er.usgs.gov/publication/wri8218)

Asquith, W.H., Slade, R. M., Lanning-Rush, Jennifer,1996, Peak-flow frequency and extreme flood potential for streams in the vicinity of the Highland Lakes, central Texas: U.S. Geological Survey Water-Resources Investigations Report 96-4072

(https://pubs.er.usgs.gov/publication/wri964072)

Liscum, Fred and Massey, B.C., 1980, Technique for Estimiating the Magnitude and Frequency of Floods in the Houston, Texas, Metropolitan Area: U.S. Geological Survey

Water-Resources Investigations Report 80-17, 29 p.

(https://pubs.er.usgs.gov/publication/wri8017)

Asquith, W.H., and Roussel, M.C.,2009, Regression equations for estimation of annual peak-streamflow frequency for undeveloped watersheds in Texas using an L-momentbased, PRESS-minimized, residual-adjusted approach: U.S. Geological Survey Scientific Investigations Report 2009–5087, 48 p. (http://pubs.usgs.gov/sir/2009/5087/) Kenney, T.A., Wilkowske, C.D., and Wright, S.J.,2007, Methods for Estimating Magnitude and Frequency of Peak Flows for Natural Streams in Utah: U.S. Geological Survey Scientific Investigations Report 2007-5158, 28 p. (http://pubs.usgs.gov/sir/2007/5158/) Wilkowske, C.D., Kenney, T.A., and Wright, S.J.,2009, Methods for Estimating Monthly and Annual Streamflow Statistics at Ungaged Sites in Utah: U.S. Geological Survey Scientific Investigations Report 2008-5230, 62 p. (http://pubs.usgs.gov/sir/2008/5230/) Olson, S.A.,2002, Flow-frequency characteristics of Vermont streams: U.S. Geological Survey Water-Resources Investigations Report 02-4238, 47 p.

(http://pubs.usgs.gov/wri/wrir02-4238/)

Olson, S.A.,2014, Estimation of flood discharges at selected annual exceedance probabilities for unregulated, rural streams in Vermont, with a section on Vermont regional skew regression, by Veilleux, A.G.: U.S. Geological Survey Scientific Investigations Report 2014–5078, 27 p. plus appendixes. (http://pubs.usgs.gov/sir/2014/5078/)

Olson, S.A., and Brouillette, M.C.,2006, A logistic regression equation for estimating the probability of a stream in Vermont having intermittent flow: U.S. Geological Survey Scientific Investigations Report 2006–5217, 15 p. (https://pubs.usgs.gov/sir/2006/5217/) Austin, S.H., Krstolic, J.L., and Wiegand, Ute,2011, Low-flow characteristics of Virginia streams: U.S. Geological Survey Scientific Investigations Report 2011–5143, 122 p. + 9 tables on CD. (http://pubs.usgs.gov/sir/2011/5143/)

Austin, S.H., Krstolic, J.L., and Wiegand, Ute,2011, Peak-flow characteristics of Virginia streams: U.S. Geological Survey Scientific Investigations Report 2011–5144, 106 p. + 3 tables and 2 appendixes on CD. (http://pubs.usgs.gov/sir/2011/5144/)

Austin, S.H.,2014, Methods and equations for estimating peak streamflow per square mile in Virginia's urban basins: U.S. Geological Survey Scientific Investigations Report 2014– 5090, 25 p. (http://pubs.usgs.gov/sir/2014/5090/http://pubs.usgs.gov/sir/2014/5090/) Curran, C.A. and Olsen, T.D.,2009, Estimating Low-Flow Frequency Statistics and Hydrologic Analysis of Selected Streamflow-Gaging Stations, Nooksack River Basin, Northwestern Washington and Canada: U.S. Geological Survey Scientific Investigations Report 2009-5170, 44 p. (http://pubs.usgs.gov/sir/2009/5170/)

Curran, C.A., Eng, Ken, and Konrad, C.P.,2012, Analysis of low flows and selected methods for estimating low-flow characteristics at partial-record and ungaged stream sites in western Washington: U.S. Geological Survey Scientific Investigations Report 2012-5078, 46 p. (http://pubs.usgs.gov/sir/2012/5078/)

Mastin, M.C., Konrad, C.P., Veilleux, A.G., and Tecca, A.E.,2016, Magnitude, frequency, and trends of floods at gaged and ungaged sites in Washington, based on data through water year 2014 (ver 1.1, October 2016): U.S. Geological Survey Scientific Investigations Report 2016–5118, 70 p. (http://dx.doi.org/10.3133/sir20165118)

Wiley, Jeffrey B.,2008, Estimating Selected Streamflow Statistics Representative of 1930–2002 in West Virginia: U.S. Geological Survey Scientific Investigations Report 2008-5105, 24 p. (http://pubs.usgs.gov/sir/2008/5105/)

Wiley, Jeffrey B.,1987, Techniques for estimating flood depth frequency relations for streams in West Virginia: U.S. Geological Survey Water-Resources Investigations Report 87-4111, 17 p. (https://pubs.er.usgs.gov/publication/wri874111)

Wiley, J.B., and Atkins, J.T., Jr., 2010, Estimation of flood-frequency discharges for rural, unregulated streams in West Virginia: U.S. Geological Survey Scientific Investigations Report 2010-5033, 78 p. (http://pubs.usgs.gov/sir/2010/5033/) Wiley, J.B., and Atkins, J.T., Jr., 2010, Estimation of selected seasonal streamflow statistics representative of 1930-2002 in West Virginia: U.S. Geological Survey Scientific Investigations Report 2010-5185, 20 p. (http://pubs.usgs.gov/sir/2010/5185/) Conger, Duane H., 1986, Estimating Magnitude and Frequency of Floods for Wisconsin Urban Streams: U.S. Geological Survey Water-Resources Investigations Report 86-4005, 18 p. (http://pubs.er.usgs.gov/publication/wri864005) Walker, J.F., Peppler, M.C., Danz, M.E., and Hubbard, L.E., 2017, Flood-frequency characteristics of Wisconsin streams (ver. 2.1, December 2017): Reston, Virginia, U.S. Geological Survey Scientific Investigations Report 2016-5140, 33 p., 1 plate, 2 appendixes (https://doi.org/10.3133/sir20165140) Miller, Kirk A., 2003, Peak-flow Characteristics of Wyoming Streams: U.S. Geological Survey Water-Resources Investigations Report 03-4107, 79 p. (http://pubs.usgs.gov/wri/wri034107/) Ramos-Ginés, Orlando, 1999, Estimation of Magnitude and Frequency of Floods for Streams in Puerto Rico: New Empirical Models: U. S. Geological Survey Water-Resources Investigations Report 99-4142, 41 p. (http://pubs.usgs.gov/wri/wri994142/) Moody, J.A., 2012, An analytical method for predicting postwildfire peak discharges: U.S. Geological Survey Scientific Investigations Report 2011-5236, 36 p. (https://pubs.usgs.gov/sir/2011/5236/) testtest (test)

Bankfull Statistics Parameters [Bankfull Statewide SIR2013 5155]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0396	square miles	0.6	329
BSLDEM10M	Mean Basin Slope from 10m DEM	10.221	percent	2.2	23.9

Bankfull Statistics Disclaimers[Bankfull Statewide SIR2013 5155]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Bankfull Statistics Flow Report[Bankfull Statewide SIR2013 5155]

Statistic	Value	Unit
Bankfull Width	4.5	ft
Bankfull Depth	0.394	ft

Statistic	Value	Unit
Bankfull Area	1.73	ft^2
Bankfull Streamflow	4.28	ft^3/s

Bankfull Statistics Citations

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013–5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Probability Statistics Pa	Irameters[Perennial Flow Probability]
----------------------------------	---------------------------------------

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.0396	square miles	0.01	1.99
PCTSNDGRV	Percent Underlain By Sand And Gravel	0	percent	0	100
FOREST	Percent Forest	100	percent	0	100
MAREGION	Massachusetts Region	1	dimensionless	0	1

Probability Statistics Flow Report [Perennial Flow Probability]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PC
Probability Stream Flowing Perennially	0.123	dim	71

Probability Statistics Citations

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006-5031, 107 p. (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

StreamStats Report: Tower Road S-2

 Region ID:
 MA

 Workspace ID:
 MA20201002040053493000

 Clicked Point (Latitude, Longitude):
 42.35585, -72.43647

 Time:
 2020-10-02 00:01:13 -0400

Basin Characteristics				
Parameter Code	Parameter Description	Value	Unit	
DRNAREA	Area that drains to a point on a stream	0.28	square miles	
ELEV	Mean Basin Elevation	986	feet	
LC06STOR	Percentage of water bodies and wetlands determined from the NLCD 2006	0	percent	
BSLDEM250	Mean basin slope computed from 1:250K DEM	7.189	percent	
DRFTPERSTR	Area of stratified drift per unit of stream length	0.69	square mile per mile	

Parameter Code	Parameter Description	Value	Unit
MAREGION	Region of Massachusetts 0 for Eastern 1 for Western	1	dimensionless
BSLDEM10M	Mean basin slope computed from 10 m DEM	9.098	percent
PCTSNDGRV	Percentage of land surface underlain by sand and gravel deposits	42.71	percent
FOREST	Percentage of area covered by forest	99.12	percent
ACRSDFT	Area underlain by stratified drift	0.12	square miles
CENTROIDX	Basin centroid horizontal (x) location in state plane coordinates	123251.9	meters
CENTROIDY	Basin centroid vertical (y) location in state plane units	901728.4	meters
CRSDFT	Percentage of area of coarse-grained stratified drift	42.71	percent
CSL10_85	Change in elevation divided by length between points 10 and 85 percent of distance along main channel to basin divide - main channel method not known	204	feet per mi
LAKEAREA	Percentage of Lakes and Ponds	0	percent
LC11DEV	Percentage of developed (urban) land from NLCD 2011 classes 21-24	6.95	percent
LC11IMP	Average percentage of impervious area determined from NLCD 2011 impervious dataset	0.28	percent
LFPLENGTH	Length of longest flow path	1.36	miles
MAXTEMPC	Mean annual maximum air temperature over basin area, in degrees Centigrade	13.3	feet per mi
OUTLETX	Basin outlet horizontal (x) location in state plane coordinates	122845	feet
OUTLETY	Basin outlet vertical (y) location in state plane coordinates	901015	feet
PRECPRIS00	Basin average mean annual precipitation for 1971 to 2000 from PRISM	48.7	inches
STRMTOT	total length of all mapped streams (1:24,000- scale) in the basin	0.18	miles
WETLAND	Percentage of Wetlands	0.91	percent

Peak-Flow Statistics Parameters [Peak Statewide 2016 5156]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.28	square miles	0.16	512
ELEV	Mean Basin Elevation	986	feet	80.6	1948
LC06STOR	Percent Storage from NLCD2006	0	percent	0	32.3

Peak-Flow Statistics Flow Report [Peak Statewide 2016 5156]

PII: Prediction Interval-Lower, Plu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PII	Plu	SEp
2 Year Peak Flood	23.2	ft^3/s	11.4	47.1	42.3
5 Year Peak Flood	40.5	ft^3/s	19.6	83.5	43.4
10 Year Peak Flood	55.2	ft^3/s	26.1	117	44.7
25 Year Peak Flood	77.4	ft^3/s	35.1	170	47.1
50 Year Peak Flood	96.4	ft^3/s	42.3	220	49.4
100 Year Peak Flood	117	ft^3/s	49.6	276	51.8
200 Year Peak Flood	141	ft^3/s	57.8	344	54.1
500 Year Peak Flood	175	ft^3/s	68.1	450	57.6

Peak-Flow Statistics Citations

Zarriello, P.J.,2017, Magnitude of flood flows at selected annual exceedance probabilities for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2016-5156, 99 p. (https://dx.doi.org/10.3133/sir20165156)

Low-Flow Statistics Parameters [Statewide Low Flow WRIR00 4135]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.28	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	7.189	percent	0.32	24.6

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRFTPERSTR	Stratified Drift per Stream Length	0.69	square mile per mile	0	1.29
MAREGION	Massachusetts Region	1	dimensionless	0	1

Low-Flow Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Low-Flow Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
7 Day 2 Year Low Flow	0.0907	ft^3/s
7 Day 10 Year Low Flow	0.0685	ft^3/s

Low-Flow Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.28	square miles	1.61	149
DRFTPERSTR	Stratified Drift per Stream Length	0.69	square mile per mile	0	1.29
MAREGION	Massachusetts Region	1	dimensionless	0	1
BSLDEM250	Mean Basin Slope from 250K DEM	7.189	percent	0.32	24.6

Flow-Duration Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

Flow-Duration Statistics Flow Report[Statewide Low Flow WRIR00 4135]

Statistic	Value	Unit
50 Percent Duration	0.261	ft^3/s
60 Percent Duration	0.195	ft^3/s
70 Percent Duration	0.189	ft^3/s
75 Percent Duration	0.167	ft^3/s
80 Percent Duration	0.227	ft^3/s
85 Percent Duration	0.185	ft^3/s
90 Percent Duration	0.208	ft^3/s
95 Percent Duration	0.124	ft^3/s
98 Percent Duration	0.086	ft^3/s
99 Percent Duration	0.0611	ft^3/s

Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

August Flow-Duration Statistics Parameters [Statewide Low Flow WRIR00 4135]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.28	square miles	1.61	149
BSLDEM250	Mean Basin Slope from 250K DEM	7.189	percent	0.32	24.6
DRFTPERSTR	Stratified Drift per Stream Length	0.69	square mile per mile	0	1.29
MAREGION	Massachusetts Region	1	dimensionless	0	1

August Flow-Duration Statistics Disclaimers [Statewide Low Flow WRIR00 4135]

One or more of the parameters is outside the suggested range. Estimates were extrapolated with unknown errors

August Flow-Duration Statistics Flow Report [Statewide Low Flow WRIR00 4135]

Value

Unit

Statistic	Value	Unit
August 50 Percent Duration	0.195	ft^3/s

August Flow-Duration Statistics Citations

Ries, K.G., III,2000, Methods for estimating low-flow statistics for Massachusetts streams: U.S. Geological Survey Water Resources Investigations Report 00-4135, 81 p. (http://pubs.usgs.gov/wri/wri004135/)

Bankfull Statistics Parameters [Bankfull Statewide SIR2013 5155]					
Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.28	square miles	0.6	329
BSLDEM10M	Mean Basin Slope from 10m DEM	9.098	percent	2.2	23.9
Bankfull Statistics	Disclaimers[Bankfull Statewide SIR2013 5155]				
One or more of unknown errors	the parameters is outside the suggested	l range. E	stimates were e	xtrapolated v	with
Bankfull Statistics I	Flow Report[Bankfull Statewide SIR2013 5155]				
Statistic		v	alue	Unit	
Bankfull Width		9	.51	ft	
Bankfull Depth 0.681 ft					
Bankfull Area		6	.37	ft^2	
Bankfull Stream	nflow	1	7.1	ft^3/s	
Bankfull Statistics Citations					

Bent, G.C., and Waite, A.M.,2013, Equations for estimating bankfull channel geometry and discharge for streams in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2013-5155, 62 p., (http://pubs.usgs.gov/sir/2013/5155/)

Probability Statistics Parameters [Perennial Flow Probability]

Parameter Code	Parameter Name	Value	Units	Min Limit	Max Limit
DRNAREA	Drainage Area	0.28	square miles	0.01	1.99
PCTSNDGRV	Percent Underlain By Sand And Gravel	42.71	percent	0	100
FOREST	Percent Forest	99.12	percent	0	100
MAREGION	Massachusetts Region	1	dimensionless	0	1

Probability Statistics Flow Report[Perennial Flow Probability]

PII: Prediction Interval-Lower, PIu: Prediction Interval-Upper, SEp: Standard Error of Prediction, SE: Standard Error (other -- see report)

Statistic	Value	Unit	PC
Probability Stream Flowing Perennially	0.614	dim	71

Probability Statistics Citations

Bent, G.C., and Steeves, P.A.,2006, A revised logistic regression equation and an automated procedure for mapping the probability of a stream flowing perennially in Massachusetts: U.S. Geological Survey Scientific Investigations Report 2006–5031, 107 p. (http://pubs.usgs.gov/sir/2006/5031/pdfs/SIR_2006-5031rev.pdf)

USGS Data Disclaimer: Unless otherwise stated, all data, metadata and related materials are considered to satisfy the quality standards relative to the purpose for which the data were collected. Although these data and associated metadata have been reviewed for accuracy and completeness and approved for release by the U.S. Geological Survey (USGS), no warranty expressed or implied is made regarding the display or utility of the data for other purposes, nor on all computer systems, nor shall the act of distribution constitute any such warranty.

USGS Software Disclaimer: This software has been approved for release by the U.S. Geological Survey (USGS). Although the software has been subjected to rigorous review, the USGS reserves the right to update the software as needed pursuant to further analysis and review. No warranty, expressed or implied, is made by the USGS or the U.S. Government as to the functionality of the software and related material nor shall the fact of release constitute any such warranty. Furthermore, the software is released on condition that neither the USGS nor the U.S. Government shall be held liable for any damages resulting from its authorized or unauthorized use.

USGS Product Names Disclaimer: Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Application Version: 4.4.0

ATTACHMENT C Abutter Information (Certified Abutter List)

PELHAM BOARD OF ASSESSORS REQUEST FOR CERTIFIED LIST OF ABUTTERS

Note: THE ASSESSORS OFFICE REQUIRES 10 BUSINESS DAYS TO PREPARE AN ABUTTERS LIST. WE THEREFORE ADVISE YOU NOT TO SCHEDULE A HEARING UNTIL YOU HAVE THIS LIST.

Please Print

Towe	r Road	14	1		
STREET	ADDRESS	MAP	PARCEL		
Cowls V	W D Inc.	Mol	Molly Lennon		
OWNER	L'S NAME	APPLI	APPLICANT'S NAME		
PO Box	9677	TRC, 650	TRC, 650 Suffolk Street		
STRI	EET	ST	STREET		
North Amh	erst, MA 01059	Lowell, N	Lowell, MA 01854		
CITY	ST	СІТҮ	STATE ZIP		
		Molly Lennon, 978-856-5912			
		CONTACT PERSON & PHONE #			

Please note that if requesting abutters lists for two different departments for the same parcel, you must fill out separate abutters request forms.

Please circle type of permit or variance requested:

- A: Liquor License Immediate abutters, also 500' from all borders for churches/hospitals/public & private schools.
- B: Planning Board Subdivision or Special Permit 300'
- C: Zoning: Special Permit or Variance Appeals 300'
- D: Conservation: -Wetland Hearing 300'
- E: Planning Site Plan Review 300'
- F: Selectboard 300'
- NOTE: THE ABUTTERS LIST IS <u>ONLY OFFICIAL FOR A PERIOD OF 30 DAYS</u> FROM THE DATE OF CERTIFICATION BY THE ASSESSOR. AFTER 30 DAYS, YOU WOULD NEED TO REAPPLY FOR A NEW LIST.

ED

(ASO002)

351 AMHERST RD RHODES BLDG PELHAM TOWN OF PELHAM Y'1-71

[®]0ðfð stalqmaT [®]ynavA azU

PELHAM, MA 01002

NORTH AMHERST, MA 01059-9677 PO BOX 9677 COWLS W D INC **PELHAM** 1-71

Feed Paper

V

aragba qu-qos bn98 brage™ ™sebb∃ qu-qo9 soqxa

AMHERST, MA 01003-9313 390 WHITMORE HALL, UMASS COMMONWEALTH OF MASS PELHAM 14-2

Easy Peel[®] Labels

NORTH AMHERST, MA 01059-9677

thamanisch ap suas

14-2

PELHAM

COMMONWEALTH OF MASS

AMHERST, MA 01003-9313

390 WHITMORE HALL, UMASS

Étiquettes faciles à peler Utilisez le gabarit AVEXY® 5160®

14-1.A PELHAM PELHAM TOWN OF 351 AMHERST RD RHODES BLDG PELHAM, MA 01002

...

- F.

révéler le rebord Pop-upTM Repliez à la hachure afin de

14-1

PELHAM

COWLS W D INC

PO BOX 9677

V

1-800-GO-AVERY www.avery.com

ATTACHMENT D Figure 1: Delineated Resources Map (November 2020)

11:04:51 AM by SMOTURI

oot US)

Plot Date: Path:

(Foot US) 2001

Da Plot

(Foot US) NAD

